Сайт для слабовидящих

Юрий Александрович Константинов
НЕ НА САЙТЕ

Юрий Александрович Константинов

Юрий Александрович Константинов
...
+79194707232
Лаборатория фотоники

Область научных интересов: Автоматизированные неразрушающие методы исследования волоконно-оптических и интегрально-оптических элементов, распределенные волоконно-оптические датчики.

Профиль в RG:

https://www.researchgate.net/profile/Yuri-Konstantinov-2

Сайт лаборатории фотоники:

https://photonics.permsc.ru/

 

2022 – Приглашенный лектор на IEEE Photonics lecture series in Universiti Kebangsaan Malaysia – UKM (Malaysia).

Учёный секретарь международной конференции "Optical reflectometry, metrology & sensing" in 2016, 2018, 2020, 2023. 

Академический редактор: Algorithms (MDPI, Basel, Switzerland, ISSN: 1999-4893), Special Issue "Algorithms and Calculations in Fiber Optics and Photonics" (2022); “Optical reflectometry, metrology & sensing Conference Proceedings” (2016, 2018, 2020).

Рецензент в журналах: Optics & Laser Technology (Elsevier), IEEE Internet of Things Journal (IEEE), IEEE Transactions on Instrumentation & Measurement (IEEE), Applied Sciences (MDPI, Basel, Switzerland), Technical Physics Letters (Springer), Symmetry (MDPI, Basel, Switzerland), Sensors (MDPI, Basel, Switzerland), Photonics (MDPI, Basel, Switzerland), Materials (MDPI, Basel, Switzerland), Science China Information Sciences (Springer), Electronics (MDPI, Basel, Switzerland), Computers (MDPI, Basel, Switzerland), Optics (MDPI, Basel, Switzerland), Journal of Marine Science and Engineering (MDPI, Basel, Switzerland), Instruments and Experimental Techniques (Springer), Crystals (MDPI, Basel, Switzerland), Micromachines (ISSN 2072-666X, MDPI, Basel, Switzerland), Quantum Electronics (IOP Science).

 

Turov, A.T.; Konstantinov, Y.A.; Totmina, E.E.; Votinova, A.G.; Masich, G.F.; Korobko, D.A.; Fotiadi, A.A. Registration of Sounds Emitted by the Madagascar Hissing Cockroach Using a Distributed Acoustic Sensor. Sensors 2025, 25, 2101. https://doi.org/10.3390/s25072101

Turov, A.T.; Konstantinov, Y.A.; Claude, D.; Maximenko, V.A.; Krishtop, V.V.; Korobko, D.A.; Fotiadi, A.A. Comparison of the Sensitivity of Various Fibers in Distributed Acoustic Sensing. Appl. Sci. 2024, 14, 10147. https://doi.org/10.3390/app142210147

Lobach, I.A.; Fotiadi, A.A.; Yatseev, V.A.; Konstantinov, Y.A.; Barkov, F.L.; Claude, D.; Kambur, D.A.; Belokrylov, M.E.; Turov, A.T.; Korobko, D.A. Newest Methods and Approaches to Enhance the Performance of Optical Frequency-Domain Reflectometers. Sensors 2024, 24, 5432. https://doi.org/10.3390/s24165432

Konstantinov, Y.; Krivosheev, A.; Barkov, F. An Image Processing-Based Correlation Method for Improving the Characteristics of Brillouin Frequency Shift Extraction in Distributed Fiber Optic Sensors. Algorithms 2024, 17, 365. https://doi.org/10.3390/a17080365

Mamykin, G.D.; Kulesh, A.A.; Barkov, F.L.; Konstantinov, Y.A.; Sokol’chik, D.P.; Pervadchuk, V. Methods for Detecting the Patient’s Pupils’ Coordinates and Head Rotation Angle for the Video Head Impulse Test (vHIT), Applicable for the Diagnosis of Vestibular Neuritis and Pre-Stroke Conditions. Computation 2024, 12, 167. https://doi.org/10.3390/computation12080167

Vladimirova, D.; Pervadchuk, V.; Konstantinov, Y. Manufacture of Microstructured Optical Fibers: Problem of Optimal Control of Silica Capillary Drawing Process. Computation 2024, 12, 86. https://doi.org/10.3390/computation12050086

Gritsenko, T.V.; Orlova, M.V.; Zhirnov, A.A.; Konstantinov, Y.A.; Turov, A.T.; Barkov, F.L.; Khan, R.I.; Koshelev, K.I.; Svelto, C.; Pnev, A.B. Detection and Recognition of Voice Commands by a Distributed Acoustic Sensor Based on Phase-Sensitive OTDR in the Smart Home Concept. Sensors 2024, 24, 2281. https://doi.org/10.3390/s24072281

Konstantinov, Y.A.; Turov, A.T.; Latkin, K.P.; Claude, D.; Azanova, I.S. A Non-Destructive Study of Optical, Geometric and Luminescent Parameters of Active Optical Fibers Preforms. Optics 2024, 5, 176-194. https://doi.org/10.3390/opt5010013

Belokrylov, M.E.; Kambur, D.A.; Konstantinov, Y.A.; Claude, D.; Barkov, F.L. An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing. Sensors 2024, 24, 1253. https://doi.org/10.3390/s24041253

Morozov, O.; Agliullin, T.; Sakhabutdinov, A.; Kuznetsov, A.; Valeev, B.; Qaid, M.; Ponomarev, R.; Nurmuhametov, D.; Shmyrova, A.; Konstantinov, Y. Fiber-Optic Hydraulic Sensor Based on an End-Face Fabry–Perot Interferometer with an Open Cavity. Photonics 2024, 11, 22. https://doi.org/10.3390/photonics11010022

Turov, A.T.; Barkov, F.L.; Konstantinov, Y.A.; Korobko, D.A.; Lopez-Mercado, C.A.; Fotiadi, A.A. Activation Function Dynamic Averaging as a Technique for Nonlinear 2D Data Denoising in Distributed Acoustic Sensors. Algorithms 2023, 16, 440. https://doi.org/10.3390/a16090440

Turov, A.T.; Konstantinov, Y.A.; Barkov, F.L.; Korobko, D.A.; Zolotovskii, I.O.; Lopez-Mercado, C.A.; Fotiadi, A.A. Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application. Algorithms, 2023, 16, 217. https://doi.org/10.3390/a16050217

Belokrylov, M.E., Claude, D., Konstantinov, Y.A. et al. Method for Increasing the Signal-to-Noise Ratio of Rayleigh Back-Scattered Radiation Registered by a Frequency Domain Optical Reflectometer Using Two-Stage Erbium Amplification. Instrum Exp Tech 66, 761–768 (2023). https://doi.org/10.1134/S0020441223050172

Taranov, M.A., Gorshkov, B.G., Alekseev, A.E. et al. Optical Reflectometry, Metrology, and Sensing. Present and Future (Review). Instrum Exp Tech 66, 713–729 (2023). https://doi.org/10.1134/S0020441223050238

Orlova, M.V., Gritsenko, T.V., Zhirnov, A.A. et al. Investigation of the Optimal Parameters of the Distributed Fiber Microphone Circuit Based on φ-OTDR for Speech Recognition. Instrum Exp Tech 66, 832–836 (2023). https://doi.org/10.1134/S0020441223050202

Turov, A.T., Barkov, F.L., Belokrylov, M.E. et al. Investigation of Signal Reception–Transmission Parameters in a Distributed Acoustic Sensor. Instrum Exp Tech 66, 802–808 (2023). https://doi.org/10.1134/S0020441223050263

Barkov, F.L., Konstantinov, Y.A. A Modification of the Backward Correlation Method for the Brillouin Frequency Shift Accurate Extraction. Instrum Exp Tech 66, 753–760 (2023). https://doi.org/10.1134/S0020441223050044

Almoosa, A.S., Zan, M.S., Ibrahim, M.F. et al. Enhancing the Temperature-Measurement Efficiency in the Brillouin Optical Time-Domain Reflectometry (BOTDR) Fiber Sensor with the K-nearest Neighbor (K-NN) Algorithm. Instrum Exp Tech 66, 745–752 (2023). https://doi.org/10.1134/S0020441223050275

Barkov, F.L.; Krivosheev, A.I.; Konstantinov, Y.A.; Davydov, A.R. A Refinement of Backward Correlation Technique for Precise Brillouin Frequency Shift Extraction. Fibers 2023, 11, 51. https://doi.org/10.3390/fib11060051

Ovchinnikov, K.A., Gilev, D.G., Krishtop, V.V. et al. Application of Optical Frequency Domain Reflectometry for the Study of Polarization Maintaining Fibers. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S156–S162 (2022). https://doi.org/10.3103/S1062873822700599 

Krivosheev, A.I., Barkov, F.L., Konstantinov, Y.A. et al. State-of-the-Art Methods for Determining the Frequency Shift of Brillouin Scattering in Fiber-Optic Metrology and Sensing (Review). Instrum Exp Tech 65, 687–710 (2022). https://doi.org/10.1134/S0020441222050268

Ponomarev, R.S., Konstantinov, Y.A., Belokrylov, M.E. et al. An Automated Instrument for Reflectometry Study of the Pyroelectric Effect in Proton-Exchange Channel Waveguides Based on Lithium Niobate. Instrum Exp Tech 65, 787–796 (2022). https://doi.org/10.1134/S0020441222050190 

Nordin, Nur D., Fairuz Abdullah, Mohd S.D. Zan, Ahmad A. A Bakar, Anton I. Krivosheev, Fedor L. Barkov, and Yuri A. Konstantinov. 2022. "Improving Prediction Accuracy and Extraction Precision of Frequency Shift from Low-SNR Brillouin Gain Spectra in Distributed Structural Health Monitoring" Sensors 22, no. 7: 2677. https://doi.org/10.3390/s22072677

Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors 2022, 22, 1033. https://doi.org/10.3390/s22031033

Ponomarev R, Konstantinov Y, Belokrylov M, Lobach I, Shevtsov D. Reflectometry Study of the Pyroelectric Effect on Proton-Exchange Channel Waveguides in Lithium Niobate. Applied Sciences. 2021; 11(21):9853. https://doi.org/10.3390/app11219853

M. E. Belokrylov et al., “An All-Fiber Time Domain Reflectometer for Measuring the Length of Active Erbium Doped Optical Fibers,” Instruments Exp. Tech., vol. 63, no. 4, pp. 481–486, 2020, doi: 10.1134/S0020441220050012.

F. L. Barkov, Y. A. Konstantinov, and A. I. Krivosheev, “A novel method of spectra processing for Brillouin optical time domain reflectometry,” Fibers, vol. 8, no. 9, pp. 1–11, 2020, doi: 10.3390/FIB8090060

F. L. Barkov, Y. A. Konstantinov, V. V. Burdin, and A. I. Krivosheev, “Theoretical and Experimental Estimation of the Accuracy in Simultaneous Distributed Measurements of Temperatures and Strains in Anisotropic Optical Fibers Using Polarization-Brillouin Reflectometry,” Instruments Exp. Tech., vol. 63, no. 4, pp. 487–493, 2020, doi: 10.1134/S0020441220040223

Krivosheev, A.I., Konstantinov, Y.A., Barkov, F.L. et al. Comparative Analysis of the Brillouin Frequency Shift Determining Accuracy in Extremely Noised Spectra by Various Correlation Methods. Instrum Exp Tech 64, 715–719 (2021). https://doi.org/10.1134/S0020441221050067

A. S. Smirnov et al., “Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry,” Quantum Electron., vol. 45, no. 1, pp. 66–68, 2015, doi: 10.1070/qe2015v045n01abeh015634.

Barkov, F.L., Konstantinov, Y.A., Bochkova, S.D., Smirnov, A.S., Burdin, V., Krivosheev, A., Nosova, E.A., Smetannikov, O.Y. Modelling of polarised optical frequency domain reflectometry of axially twisted anisotropic optical fibres. Quantum Electronics 2019, 49, 514–517 http://dx.doi.org/10.1070/QEL16832

Konstantinov, Yuri A, Kryukov, Igor' I, Pervadchuk, Vladimir P,, Toroshin, Andrei Yu (Nov 2009). Polarisation reflectometry of anisotropic optical fibres. Quantum Electronics (Woodbury, NY), 39(11), 1068-1070. doi:101070/QE2009v039n11ABEH014171

Karnaushkin, P.V., Konstantinov, Y.A. An Experimental Technique for Aligning a Channel Optical Waveguide with an Optical Fiber Based on Reflections from the Far End of the Waveguide. Instrum Exp Tech 64, 709–714 (2021). https://doi.org/10.1134/S002044122104018

Y. A. Konstantinov et al., Special optical fiber preform layers 3D-reconstruction, Sci. Vis., vol. 9, no. 4, pp. 47–58, 2017, doi: 10.26583/sv.9.4.05.

V.V. Burdin, Y. A. Konstantinov, D. Claude et al. Multistage Quality Control of Active Fiber Light Guides. Instruments Exp. Tech, 768–775 (2021). https://doi.org/10.1134/S0020441221050031

Yuri A. Konstantinov, Fedor L. Barkov, and Roman S. Ponomarev, "Metrological Applications of Optical Reflectometry: A Review," International Journal of Electrical and Electronic Engineering & Telecommunications

Maxim E. Belokrylov, Andrey A. Kozlov, Pavel V. Karnaushkin, Yuri A. Konstantinov, Roman S. Ponomarev, and Artem T. Turov, "Improving the Selected Stages of Integrated-Optic Chip Structure Formation and Its Interfacing with Optical Fibers," International Journal of Electrical and Electronic Engineering & Telecommunications, Vol. 11, No. 3, pp. 167-174, May 2022. Doi: 10.18178/ijeetc.11.3.167-174

V. V Burdin, Y. A. Konstantinov, V. P. Pervadchuk, and A. S. Smirnov, “A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre,” Quantum Electron., vol. 43, no. 6, pp. 531–534, 2013, doi: 10.1070/qe2013v043n06abeh014995

A.I. Krivosheev; Yu.A. Konstantinov; V.V. Krishtop; A.T. Turov; F.L. Barkov; A.A. Zhirnov; E.O. Garin; A.B. Pnev; "A Neural Network Method For The BFS Extraction," 2022 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2022, pp. 01-01, doi: 10.1109/ICLO54117.2022.9839892.

M.E. Belokrylov; Yu.A. Konstantinov; A.I. Krivosheev; A.T. Turov; K.V. Stepanov; E.O. Garin; A.B. Pnev; A.A. Fotiadi "A Single-Scan PM-Fibers Polarization Axes Study," 2022 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2022, pp. 01-01, doi: 10.1109/ICLO54117.2022.9839865.

M. E. Belokrylov et al., "An OFDR’s hardware and software optimization and its performance estimation," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 154-154, doi: 10.1109/ICLO59702.2024.10624492.

F. L. Barkov, A. I. Krivosheev and Y. A. Konstantinov, "Correlation-Based Technique for the BFS Extraction," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 445-445, doi: 10.1109/ICLO59702.2024.10623998.

Y. A. Konstantinov, F. L. Barkov and A. I. Krivosheev, "Increasing BOTDA precision using correlation image processing methods," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 436-436, doi: 10.1109/ICLO59702.2024.10624329.

 

Руководитель и участник проектов, поддержанных РФФИ, ​​хоздоговорных НИР; участник проектов, подержанных Российским научным фондом.