Аннотация проекта:

Возрастающее использование возобновляемых источников с сильно изменяющимся во времени выходом энергии требует соответствующего масштабного расширения хранилищ электроэнергии. Хотя углеводороды считаются единственным жизнеспособным способом долгосрочного хранения энергии (на масштабах тераватт-часов), электрохимические хранилища являются привлекательным кандидатом для краткосрочного и среднесрочного хранения. Жидкометаллические батареи (ЖМБ) активно изучались еще в 1960-х и вновь привлекли к себе внимание в последнее время. ЖМБ состоят из двух жидких металлических электродов, разделенных слоем жидкости с ионной проводимостью (расплавленной соли). Их основными преимуществами являются сверхбыстрая кинетика переноса заряда на границах жидкость-жидкость, обеспечивающая чрезвычайно высокую плотность тока заряда-разряда, их потенциально низкая стоимость, обусловленная обилием электродных материалов, таких как натрий и свинец, а также, отсутствие проблем старения, что обещает беспрецедентный срок службы. В настоящее время созданы образцы небольших лабораторных ЖМБ, однако выходу на промышленно интересные размеры мешает целый букет гидродинамических и магнитогидродинамических (МГД) неустойчивостей: конвективная, электровихревая, тейлеровская и пр.   Проект включает теоретическое и экспериментальное исследование гидродинамики ЖМБ, в частности МГД-эффектов, возникающих в многослойных жидкометаллических системах при протекании больших электрических токов и вызванном ими сильном локальном разогреве. Предстоит выяснить критерии, определяющие ограничения на максимальный размер ЖМБ и / или на минимальную толщину слоя электролита, а также, провести поиск путей преодоления этих ограничений.
       Удивительно, но одна из МГД неустойчивостей, связанных с ЖМБ, неустойчивость Тейлера, лежит и в основе модели Тейлер-Спройта для звездных динамо. Недавно было обнаружено, что в отличие от других моделей солнечного динамо, модель Тейлера-Спройта очень восприимчива к синхронизации слабыми приливно-отливными силами, вызываемыми движением планет. Это может послужить ключом к объяснению удивительной эмпирической синхронизации цикла Швабе с периодической со-ориентацией трех доминирующих планет (Венеры, Земли и Юпитера) с периодом11.07 лет. В рамках проекта планируется подтвердить и расширить эту модель синхронизации с целью объяснить и более длительные циклы солнечного динамо, которые, в свою очередь, должны быть поняты и количественно определены, чтобы получить более надежные климатические прогнозы и обеспечить выявление антропогенных компонентов. Будет  построена модель синхронизации динамо, которая позволит подтвердить (или опровергнуть) эту возможность. В том случае, если идея обнаружит жизнеспособность, мы предполагаем построить метод использования обнаруженного таким образом фактора, определяющего солнечную активность, для ее прогноза. Мы ожидаем, что эти методы, безотносительно от судьбы идеи синхронизации самой по себе, окажутся полезными для задачи предсказания солнечной активности. В ходе проекта будут развиты соответствующие методы анализа и прогноза.
       План работ включает четыре задачи:  первая и вторая посвящены ЖМБ, третья и четвертая - солнечному динамо. Обе темы проекта тесно связаны лежащими в их основе МГД неустойчивостями, что отражает и содержание задач плана. Учитывая имеющийся опыт участвующих институтов, работа будет проводиться в тесном сотрудничестве в расчете на синергетический эффект.
Задача 1 «Эксперименты по ЖМБ» направлена на изучение различных МГД неустойчивостей в ЖМБ в «холодном» трехслойном эксперименте, который позволит использовать весь арсенал методов измерений. Второй этап предполагает переход к «горячей» системе с Bi, солью Na и Na, для чего должны быть разработаны соответствующие индукционные методы идентификации границ раздела. С учетом опыта  экспериментов по конвекции натрии, эксперимент будет реализован в ИМСС, но при всесторонней поддержке ГЦДР как при планировании и подготовке эксперимента, так и в подготовке и проведении измерений.
Задача 2 «Численное моделирование и разработка методов измерений для ЖМБ» включает численные исследования ЖМБ. Основываясь на существующей библиотеке разработанных в ГЦДР кодов для одно- и двухфазных потоков, большая часть численных работ будет проводиться в ГЦДР, но при тесном сотрудничестве с группой в Перми. Работа по комбинированной индуктивной системе для одновременного определения скорости потока и положений интерфейса будет проводится совместно. Во всех экспериментах будут проанализированы возникающие режимы течения и структура поверхности для разных параметров процесса. Результаты численного моделирования будут сопоставлены с результатами эксперимента. Это позволит уточнить математическую модель и достичь хорошего согласия между результатами расчета и эксперимента.
Задача 3 «Эксперимент по инициированию колебаний спиральности в потоке Рэлея-Бенара» относится к модели планетарной синхронизации солнечного динамо, которая основана на изменениях спиральности, вызванных приливно возмущениями, без существенного изменения кинетической энергии. Идея состоит в том, чтобы исследовать запуск колебаний спиральности в конвективном эксперименте  с помощью соответствующего возмущения старшей моды. Эксперимент будет проводиться в ГЦДР, но с учетом опыта российской группы по конвективным экспериментам на жидком металле.
Задача 4 «Теория синхронизации солнечного динамо» направлена на развитие модель солнечного динамо с синхронизацией, и ее согласования с традиционными моделями солнечного динамо, а также данными солнечных наблюдений и связанных с климатом данных. Поскольку модель опирается на МГД явления, рассматриваемые и задачах ЖМБ, задача 4 тесно связана методологически с задачей 2. Существующий код будет адаптирован и использован для изучения колебаний спиральности при более высоких (магнитных) числах Прандтля. Численное моделирование будет также выполнено для более тонких цилиндрических оболочек (которые более похожи на тахолин, но численно более затратны) и с учетом вращения. Результаты моделирования будут сравниваться с данными наблюдения за солнечной активностью. Особое внимание будет уделено долговременных циклов и тому, как они могут возникать в модели синхронизации. Основные численные эксперименты будут выполняться в ГЦДР, при активной поддержке ИМСС и МГУ в части построения моделей 
и интерпретации наблюдательных данных.

Основные участники российского коллектива:

Институт механики сплошных сред УрО РАН

Фрик Петр Готлобович (рук.) 
Степанов Родион Александрович (осн. исп.)
Колесниченко Илья Владимирович (осн. исп.)
Халилов Руслан Ильдусович,
Павлинов Александр Михайлович,
Мамыкин Андрей Дмитриевич,
Титов Валерий Викторович, 
Лосев Геннадий Леонидович, 

Московский государственный университет

Соколов Дмитрий Дмитриевич (осн. исп.)
Калинин Антон Олегович, 

Основные участники зарубежного коллектива:

Геймгольц Центр Дрезден-Розендорф

Стефани Франк (рук.) , доктор наук, вед.науч.сотр. 
Вайер Том, доктор тех.наук, науч.сотр. 
Вебер Норберт, доктор тех.наук., пост.док. 
Гиизеке Андре, доктор наук, науч.сотр. 
Вондрак Томас, доктор тех.наук 

Аннотация к проекту
 
Работа посвящена исследованию и внедрению технологий контейнерной виртуализации для распределенных в пространстве суперкомпьютерных приложений. 
Доставка задач на вычислительные узлы в заранее подготовленных контейнерах позволит унифицировать окружение расчетных приложений, обеспечить независимость от установленных на узлах программ, библиотек, версий MPI и операционных систем. Это позволит снизить нагрузку на администраторов суперкомпьютера по установке и поддержанию актуальности требуемых пользователям библиотек и других зависимостей и повысит управляемость программной инфраструктуры, так как пользовательские расчетные приложения будут изолированы внутри контейнеров от основной операционной системы узлов.
В рамках проекта были разработаны и реализованы два способа запуска расчетных приложений в контейнерах. Первый, универсальный, способ базируется на использовании SSH серверов в контейнерах и SSH подключений для запуска дочерних процессов. Достоинством этого способа является универсальность, недостатком – недостаточная безопасность, так как в пользовательском контейнере выполняется SSH сервер с правами суперпользователя, через который теоретически может получить доступ к хостовой операционной системе.
Второй способ позволяет запускать параллельные приложения, интегрированные с системой  Slurm и использующие srun для запуска дочерних процессов на вычислительных узлах. Достоинством этого способа является возможность запуска пользовательских контейнеров с правами непривилегированного пользователя суперкомпьютера. В этом случае в контейнере не будет процессов, выполняющихся с повышенными привилегиями, что не дает возможность приложениям из контейнера штатными средствами повысить свои привилегии на вычислительных узлах или покинуть контейнер.
Оба способа позволяют использовать для запуска контейнеризированных задач немодифицированный менеджер управления потоком задач Slurm и реализуются в виде набора приложений, инкапсулирующих подготовительные действия, необходимые для запуска контейнеров на вычислительных узлах.
Разработанная архитектура и способы запуска задач позволяют создавать универсальные образы задач, не привязанные к конкретному суперкомпьютеру и к конкретным пользователям. Это позволит, например, подготовить общий контейнер с каким-либо расчетным приложением, которым без изменений смогут пользоваться все пользователи суперкомпьютера.
Тестирование разработанных решений показало возможность запуска задач в контейнерах и успешную интеграцию контейнеров с Ethernet и InfiniBand интерконнектами. Интеграция осуществлялась, в случае Ethernet интерконнекта путем использования общего с хостовой системой сетевого стека, а в случае InfiniBand путем передачи устройства сетевой карты внутрь контейнера.
Тестирование эффективности разработанных решений, проведенное с помощью системы Intel(R) MPI Benchmark Suite показало отсутствие видимого замедления работы приложений при работе в контейнерах по сравнению с традиционным запуском без виртуализации.
 
Список публикаций
1)  Щапов В. А. Латыпов С.Р. Способы запуска задач на суперкомпьютере в изолированных окружениях с применением технологии контейнерной виртуализации docker // Научно-технический вестник Поволжья. – Казань. – 2017. – № 5. – С. 172-177.
2)  Shchapov V., Masich G., Masich A., Latypov S. Perm Scientific Center UB RAS Cloud-Computing Infrastructure for a Data Stream Processing // Параллельные вычислительные технологии – XI международная конференция, ПаВТ'2017, г. Казань, 3–7 апреля 2017 г. Короткие статьи и описания плакатов. Челябинск: Издательский центр ЮУрГУ, 2017. 552 с. – С. 167-181.
3)  Щапов В. А., Денисов А. В., Латыпов С. Р. Применение контейнерной виртуализации Docker для запуска задач на суперкомпьютере // Суперкомпьютерные дни в России: Труды международной конференции (26-27 сентября 2016 г., г. Москва). – М.: Изд-во МГУ, 2016. – С. 505-511.
 
Иллюстрации
 
rffi 16 37 00069 mol a img1
Общая схема работы задач в контейнерах
 
rffi 16 37 00069 mol a img2
Запуск MPI задачи с помощью OpenMPI slurm plm модуля внутри docker контейнеров

Проблема интенсификации теплообмена при помощи неоднородных по пространству граничных условий представляет большой интерес. В данной работе  исследуется влияние неоднородного, непериодического распределения нагрева на структуру течения и конвективный теплопоток для существенно турбулентных режимов (Ra = 1,1·109). Численное моделирование конвективной турбулентности при неоднородном распределении нагрева на нижней границе в кубической полости выполнено с помощью открытого программного обеспечения OpenFoam 4.1. Представлены результаты для трех вариантов распределения нагреваемых областей: локализованный нагрев, девять нагревателей одинакового размера, равноудаленные друг от друга и фрактальная геометрия нагревателя. Все три варианта распределения имеют одинаковую площадь нагрева. Показано, что во всех случаях неоднородного распределения нагрева в полости формируется крупномасштабная циркуляция, динамика и структура которой зависит от распределения температуры на нижней границе. Выявлены спонтанные переориентации плоскости крупномасштабной циркуляции на ±45° или ±90°. Проведено сравнение интенсивности теплового потока через слой при фиксированном перепаде температуры на горизонтальных границах. Интенсивность теплообмена слабо зависит от распределения температуры на нижней границе. Максимальное отличие в числе Нуссельта при трех вариантах неоднородного распределения температуры не превышает 5%. Сравнение результатов численного моделирования при однородном и неоднородном распределениях нагрева для Ra = 1,1·109 показало, что уменьшение площади нагрева на 70% приводит к снижению значения числа Нуссельта на 10%.  Обнаружено, что величина потока тепла падает с уменьшением площади нагрева не пропорционально ее изменению при фиксированных температурах в области нагрева и охлаждения. Для практических приложений важную роль играет стабильность теплового потока, которая характеризуется отсутствием пульсаций. Установлено, что использование фрактального нагрева позволяет значительно снизить уровень пульсаций теплопотока без потерь в эффективности теплопереноса.

Проект РФФИ № 17-48-590539 «Влияние электромагнитных сил на процессы в расплавленном металле с твердыми включениями»
рук. Колесниченко И.В., первый этап (2017г)

В ходе выполнения всего проекта будет создан пилотный образец установки и с помощью нее будут получены научные результаты, которые имеют выраженное прикладное направление. Подобную установку в дальнейшем можно изготовить под конкретные требования. Установка позволяет осуществлять комплексное бесконтактное электромагнитное воздействие на расплавленный цветной металл или сплав для улучшения его свойств. В установке осуществляется предварительное плавление металла с электромагнитным перемешиванием. Металл может быть в любом изначальном виде: слитки, стружка, литниковые отходы, лом, брак. В установке возможно осуществить очистку металла от неметаллических включений, либо выделение остаточного металла из расплава солей или шлама. Также установка позволяет разливать металл в цилиндрические слитки методом полунепрерывного литья с применением двунаправленного электромагнитного перемешивания. Установка будет являться продуктом наукоемкого производства. Она будет конкурентноспособна, доступна по цене, тем самым отвечая современным требованиям правительства по модернизации экономики, производства и импортозамещению. На первом этапе проекта разработана первая очередь установки и численно и экспериментально изучены магнитогидродинамические процессы в ее компонентах.

rffi 17 48 590539 img1

(a) – эксперимент по измерению силы, (b) — эксперимент по изучению течения жидкого металла.

rffi 17 48 590539 img2

Слева — зависимость силы от тока в обмотках для разного количества витков, справа — зависимость индукции от тока в обмотках для разных толщин спинки.

Второй этап (2018 г.)

На втором этапе проекта выполнены работы по разработке и изготовлению второй очереди экспериментальной установки, а также исследованию влияния электромагнитных сил на процессы в расплавленном металле. Построена матмодель и численно исследован процесс течения, поведения примесей и кристаллизации в прямоугольном объеме тигля при воздействии бегущего магнитного поля. Изучена зависимость темпа кристаллизации от параметров процесса при различных видах бегущего магнитного поля. Экспериментально исследован процесс кристаллизации в прямоугольном объеме тигля при воздействии бегущего магнитного поля. Найдены зависимости темпа кристаллизации от параметров процесса в прямоугольном объеме жидкого металла при разных характеристиках бегущего магнитного поля. Построена матмодель и проведено численное исследование электромагнитного индуктора для цилиндрического канала. Определены в результате расчетов геометрические размеры, технические параметры (число витков обмоток, сечение провода) электромагнитного индуктора для цилиндрического канала. Численно найденные наилучшие массо-габаритные характеристики, которые не допустят насыщения магнитного поля в ферромагнитном сердечнике. Построена матмодель и численно исследована гидродинамика, поведение включений и процесс кристаллизации жидкого металла при наличии воздействия бегущего и вращающегося магнитных полей в цилиндрическом объеме. Определена зависимость темпа кристаллизации от параметров процесса. Численно исследован электромагнитный насос и расходомер для раздаточного узла для дозированного разлива расплава. Определены характеристики и параметры для коаксиального электромагнитного насоса бегущего поля и электромагнитного расходомера.

rffi 17 48 590539 img3a  rffi 17 48 590539 img3b 

Рис. 3. (a) Схема экспериментальной установки: 1. кювета с жидким металлом, 2. теплообменники, 3. термостат, 4. линейная индукционная машина, 5. источник питания, 6. ультразвуковой доплеровский анемометр, 7. ультразвуковые датчики. (b) Изменение положения фронта кристаллизации в зависимости от времени при питающих индуктор токах: 1. 0A, 2. 3.0A, 3. 5.0A.

rffi 17 48 590539 img4a  rffi 17 48 590539 img4b 

Рис. 4. (a) Скорость движения фронта кристаллизации V в зависимости от периода модуляции бегущего магнитного поля. (b) Эксперимент для верификации расчета электромагнитной силы.

Аннотация

Проект направлен на решение фундаментальной проблемы прогнозирования эволюции конвективных геофизических течений и прикладной проблемы формирования конвективных течений и переноса примесей в условиях города. Актуальность этих проблем обусловлена влиянием атмосферных течений на метеорологические условия, перенос примесей, а также значительным ущербом в случае экстремально интенсивных вихрей. Конкретно в рамках проекта предлагается решить несколько задач. Во-первых провести лабораторное и численное исследование нестационарной фазы формирования конвективного течения над локализованным источником тепла в неподвижном и вращающемся слое жидкости, в том числе и при наличии обратной связи между теплопотоком и структурой течения. Реализация обратной связи является технически сложной задачей и потребует совместных усилий целой группы специалистов. Во-вторых изучить влияние рельефа поверхности на формирование конвективных течений и перенос примесей. Эта часть проекта обладает высоким прикладным значением. В настоящее время активно развивается область науки, направленная на исследование климатических условий на масштабе крупных городов. Применение лабораторного моделирования для изучения распространения конвективных течений и примесей с учетом рельефа г. Перми является актуальной задачей и может стать началом комплексного использования данного подхода для прогнозирования последствий различных техногенных катастроф и влияния выбросов крупных индустриальных предприятий. Экспериментальное исследование будет проводиться на специализированных стендах для исследования конвективных течений в прозрачных средах с использованием системы полевых измерений скорости PIV. Трехмерный рельеф поверхности будет реализован при помощи 3D принтера. Численное моделирование будет проводится на базе открытого программного обеспечения OpenFoam и кластера ИМСС УрО РАН «Тритон».

Участники проекта:

  • Сухановский Андрей Николаевич, к.ф.-м.н., старший научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Васильев Андрей Юрьевич, к.ф.-м.н., научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Евграфова Анна Валерьевна, к.ф.-м.н., младший научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Павлинов Александр Михайлович, к.ф.-м.н., младший научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Попова Елена Николаевна, к.ф.-м.н., инженер-исследователь лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Степанов Родион Александрович, д.ф.-м.н., ведущий научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Теймуразов Андрей Сергеевич, к.ф.-м.н., научный сотрудник лаборатории "Физической гидродинамики" ИМСС УрО РАН;
  • Чугунов Денис Петрович, ведущий инженер лаборатории телекоммуникационных и информационных систем ИМСС УрО РАН;
  • Щапов Владислав Алексеевич, ктн, младший научный сотрудник лаборатории телекоммуникационных и информационных систем ИМСС УрО РАН, доцент кафедры информационных технологий и автоматизированных систем ПНИПУ.

Заявленные цели Проекта на период, на который предоставлен грант

Проект направлен на решение фундаментальной проблемы прогнозирования эволюции конвективных геофизических течений. Актуальность проблемы обусловлена влиянием таких течений на метеорологические условия, перенос примесей, а также значительным ущербом в случае экстремально интенсивных вихрей. Конкретно в рамках проекта предлагается решить несколько задач.

  1. Лабораторное и численное исследование нестационарной фазы формирования конвективного течения над локализованным источником тепла в неподвижном и вращающемся слое жидкости.
  2. Лабораторное и численное исследование нестационарной фазы формирования конвективного течения над локализованным источником тепла в неподвижном и вращающемся слое жидкости при наличии обратной связи между величиной теплопотока и скоростью жидкости.
  3. Построение теоретической модели, описывающей основные характеристики конвективного течения в зависимости от типа нагрева и связи между полем скорости и интенсивностью теплообмена.
  4. Изучение влияния рельефа поверхности на конвективные течения от локализованного источника тепла.
  5. Изучение влияния рельефа поверхности на распространение примеси при наличии или отсутствии основного крупномасштабного течения.

Полученные за 2016 год, результаты с описанием методов и подходов, использованных в ходе выполнения проекта (описать, уделив особое внимание степени оригинальности и новизны)

Основной упор в ходе выполнения работ первого года проекта был сделан на изучение нестационарной фазы формирования конвективного течения над локализованным источником тепла во вращающемся слое жидкости. Данный цикл работ связан с лабораторным моделированием крупномасштабных геофизических течений, а именно тропических циклонов. Проблема генезиса и эволюции тропических циклонов стоит сейчас очень остро, так как ежегодно они приводят к большому количеству жертв и колоссальному экономическому ущербу. Основное внимание уделяется улучшению систем прогнозирования. Как известно качество прогноза существенно зависит от используемых математических моделей. Однако несмотря на наличие высокопроизводительных многопроцессорных систем, возможности численного моделирования до сих пор серьезно ограничены. Основная масса расчетов проводится на сетках с пространственным разрешением 2--3 км, а процессы, протекающие на подсеточных масштабах, учитываются при помощи различных математических моделей. Это касается эффектов связанных с турбулентностью, роль вторичных течений, характерный размер которых составляет 1--3 км, до настоящего времени является неучтенной. Еще одной серьезной проблемой при численном моделировании реальных атмосферных течений является большое количество используемых параметров (влажность, сжимаемость, различные физические свойства среды и т.д.). В силу того, что время полномасштабного 3D расчета занимает порядка недели, проверить роль каждого из входящих в модель управляющих параметров практически невозможно. Ограниченные возможности математического моделирования атмосферных течений обусловили подъем интереса к использованию лабораторного моделирования в геофизической гидродинамике. На основе подхода, предложенного в (Г. П. Богатырев. .Возбуждение циклонического вихря или лабораторная модель тропического циклона., Письма в ЖЭТФ, 51:11 (1990),с. 557–559.) используя измерения методом PIV (Particle Image Velocimetry), удалось показать, что структура лабораторного конвективного вихря подобна структуре тропического циклона (А. В. Евграфова, А. Н. Сухановский, Е. Н. Попова. Потоки углового момента во вращающемся слое с локализованным нагревом.,Вычислительная механика сплошных сред, 9:4 (2016), с. 498–508; V. Batalov, A. Sukhanovsky, P. Frick. “Laboratory study of differential rotation in a convective rotating layer”, J. Geophys. Astrophys. Fluid Dynam., 104:4 (2010), pp. 349–368; A. Sukhanovskii, A. Evgrafova, E. Popova. “Laboratory study of a steady-state convective cyclonic vortex”, Quarterly Journal of the Royal Meteorological Society, 142:698 (2016), pp. 2214–2223; A. Sukhanovskii, A. Evgrafova, E. Popova. “Non-axisymmetric structure of the boundary layer of intensive cyclonic vortex”, Dynamics of Atmospheres and Oceans, 80 (2017), pp. 12–28). Сравнение проводилось как с результатами натурных наблюдений, так и с результатами численных моделей, используемых метеорологами для прогноза эволюции и траектории движения реальных тропических циклонов (J. A. Zhang, R. F. Rogers, D. S. Nolan, F. D. Marks (Jr.). “On the characteristic height scales of the hurricane boundary layer”, Mon. Weather Rev., 139 (2011), pp. 2523–2535; R. K. Smith, M. T. Montgomery, J. Persing. “On steady-state tropical cyclones”, Q. J. R. Meteorol. Soc., 140 (2014), pp. 2638–2649). Эксперименты показали, что структура циклонического вихря существенно зависит от вязкости жидкости, что хорошо согласуется с результатами натурных наблюдений (в случае атмосферных течений имеется в виду турбулентная вязкость). Таким образом, несмотря на очевидные ограничения, связанные с тем, что в лабораторном эксперименте невозможно прямое моделирование атмосферных течений, он позволяет на основе реальной физической системы исследовать целый ряд явлений, наблюдаемых в атмосфере.

В результате исследований нестационарной фазы формирования интенсивного конвективного вихря были получены следующие результаты:

  1. Временные зависимости максимальных значений радиальной и азимутальной скорости в нижней части слоя, на высоте h=5 мм.
  2. Временные зависимости энергий азимутального и радиального движения, осредненных по области нагрева, на высоте h=5 мм.
  3. При помощи визуализации алюминиевой пудрой описана временная эволюция конвективных структур при формировании и разрушении циклонического вихря (после прекращения нагрева).
  4. Показана сильная корреляция между временной зависимостью температуры нагревателя и интенсивностью вихря.
  5. Показано, что динамика конвективного вихря существенно зависит от скорости вращения модели.

Все полученные результаты являются новыми. На основе полученных результатов идет подготовка статьи для публикации в журнале Quarterly Journal of the Royal Meteorological Society (Sukhanovskii A., Evgrafova A., Popova E. Spin-up and spin-down of cyclonic vortex over localized heat source. Part I. Flow topology and characteristics.)

Наряду с экспериментальным моделированием была подготовлена математическая модель, реализованная в открытом CFD пакете OpenFOAM в постановке максимально приближенной к эксперименту. Несмотря на то, что численная реализация занимает значительно больше времени чем эксперимент, ее результатом является серия мгновенных распределений характеристик течения в объеме, что недостижимо в эксперименте. Поэтому проведение численного моделирования для наиболее интересных экспериментальных режимов представляет несомненный интерес. Были проведены первые расчеты для исследования нестационарной фазы формирования конвективного течения над локализованным источником тепла во вращающемся слое жидкости. Получена зависимость интегральных и локальных характеристик течения от времени.

Второй блок работ был направлен на лабораторное исследование нестационарной фазы формирования конвективного течения над локализованным источником тепла во вращающемся слое жидкости при наличии обратной связи между величиной теплопотока и скоростью жидкости. Как известно в природных и технологических процессах часто существует связь между гидродинамическими и термодинамическими характеристиками. Так изменение скорости или топологии течения может привести к росту или уменьшению выделения тепла в результате тех или иных термодинамических процессов (горение, конвективный теплообмен, конденсация, химические реакции и т.д.). Данный проект сфокусирован на исследовании процесса выделения скрытого тепла при формировании крупномасштабных атмосферных вихрей, таких как тропические циклоны, которые в различных регионах называются также ураганами и тайфунами. Основные усилия были сосредоточены на создании технологии интеграции измерительных и вычислительных систем, предназначенная для проведения эксперимента по изучению формирования циклонического вихря над локализованным источником тепла при наличии связи между интенсивностью нагрева и скоростью течения. Ранее единственная попытка реализовать связь между интенсивностью тепловыделения и скоростью течения, в связи с изучением тропических циклонов, была предпринята около 50 лет тому назад (R. K. Hadlock, S. L. Hess. “A laboratory hurricane model incorporating an analog to release of latent heat”, J. Atmos. Sci., 25:2 (1968), pp. 161–177), где скорость экзотермической химической реакции зависела от скорости течения. Было показано, что центральная часть наблюдаемого циклонического вихря качественно подобна стене "глаза" тропического циклона.

Надо отметить, что малое количество лабораторных исследований посвященных изучению тропических циклонов обусловлено рядом причин. Прежде всего, отметим узкий диапазон параметров, в котором наблюдается формирование лабораторного аналога тропического циклона. Предлагаемый подход открывает новые, широкие возможности благодаря контролируемой связи между скоростью течения и нагревом. Основная сложность при реализации данного подхода связана с решением целого ряда технических задач, связанных с разработкой и сопряжением различных элементов системы, таких как сбор данных, хранение данных, обработка данных и контроль нагрева.

Эксперимент с обратной связью подразумевает обработку данных непосредственно в ходе измерений. Программное обеспечение, поставляемое с системой «Полис», не предоставляет такую возможность. Вторая проблема обусловлена тем, что метод PIV ресурсоемкий и при частоте измерений в 0,5 Гц производительности персонального компьютера недостаточно для их обработки в режиме измерений. Характерное время, требуемое для обработки одного измерения на персональном компьютере сильно варьируется в зависимости от параметров обработки и производительности ПК, как правило, это десятки секунд. Поэтому процесс обработки перенесен на параллельную вычислительную систему - суперкомпьютер. При этом вычислительная часть процесса обработки линейно масштабируется с ростом числа вычислительных узлов. Таким образом, путем увеличения количества вычислительных узлов, используемых для обработки данных, можно получить скорость обработки достаточную для проведения экспериментов с обратной связью. Перенос обработки данных на внешнюю вычислительную систему требует создания сети передачи данных между измерительной и вычислительной системой, а также решения задачи эффективного распределения потока измерений по вычислительным узлам и возврата результатов обработки от вычислительных узлов на экспериментальную установку (V. Shchapov, G. Masich, A. Masich. “Platform for parallel processing of intense experimental data flow on remote supercomputers”, Procedia Computer Science, 66 (2015), pp. 515–524; Р. Степанов, А. Масич, В. Щапов,А. Сухановский, А. Игумнов, Г. Масич. .Обработка на супервычислителе потока экспериментальных данных., Вестник УГАТУ, 16:3(48) (2012), с. 126–133). Разработанная система передачи и обработки данных функционирует следующим образом. Данные измерений (пары изображений) загружаются программным обеспечением экспериментальной установки и передаются менеджеру потоков данных. В ответ на запросы вычислительных узлов менеджер потоков данных отдает им следующее доступное в его очереди измерение. После обработки данных вычислительные узлы передают результаты менеджеру потоков данных. Управляющее программное обеспечение экспериментальной установки запрашивает у менеджера новые результаты, и после их получения принимает решение о формировании управляющих воздействий на исследуемый объект. Так как каждое исходное измерение получает уникальный возрастающий номер, то управляющее программное обеспечение установки может правильно обрабатывать получаемые результаты обработки, даже если они будут получены в другом порядке. Разработанный подход позволяет установить связь между нагревом и скоростью движения. Таким образом, происходит моделирование выделения скрытого тепла в пограничном слое тропического циклона. В качестве локализованного нагревателя используется медный теплообменник радиусом 5,2 см и толщиной 1 см, расположенный в центральной области заподлицо с дном модели. Питание нагревателя производится при помощи стабилизированного источника тока. Для контроля граничных условий используется термопара, расположенная внутри теплообменника вблизи границы с жидкостью. Медь-константановая термопара подключена к регулятору температуры Термодат-17Е5. Прибор позволяет задавать целевую температуру или мощность нагрева вручную с лицевой панели, либо дистанционно путём подачи команд по интерфейсу RS-485. Такое управление было выбрано для сопряжения экспериментальной установки с программным обеспечением, осуществляющим анализ структуры течения. Управляющий сигнал прибора (низковольтные импульсы с изменяемой скважностью) поступает на оптосимисторный силовой блок, включенный в разрыв цепи питания нагревателя. Таким образом, коэффициент использования мощности нагревателя варьируется от нуля до 100% с точностью в 1%. Для изменения максимальной мощности нагревателя использован лабораторный автотрансформатор, включённый в промышленную сеть. Для каждого эксперимента устанавливается функциональная связь между средней скоростью течения над нагревателем и температурой (или мощностью) нагревателя. Таким образом, характеристики течения, полученные в результате обработки изображений методом PIV, служат входными параметрами для системы нагрева. Эти параметры вычисляются с необходимой частотой и записываются в файлы уставок и периодически считываются программой управления регулятором температуры. При этом регулятор температуры работает как пропорционально-интегрально-дифференциальный (ПИД) регулятор, обеспечивая быстрый выход системы на требуемый режим и минимизируя колебания температуры в теплообменнике.

В результате проведения работ по второму блоку проекта были получены следующие результаты:

  1. Разработано и апробировано программное обеспечение, которое позволяет проводить целый ряд операций: сбор экспериментальных данных, передачу данных на вычислительные узлы, обработку экспериментальных данных методом PIV, передачу обработанных данных на управляющий компьютер, управление нагревом на основе функциональной связи между скоростью течения и мощностью нагрева.
  2. При помощи разработанного подхода проведена серия экспериментальных измерений для различных коэффициентов линейной связи скорости течения и мощности нагрева.

Реализованный подход использования суперкомпьютерных мощностей для нужд эксперимента, является оригинальным и чрезвычайно перспективным не только для конкретной работы, но и в целом для оптимизации экспериментальных исследований в самых различных областях.

Разработанный пакет программ планируется зарегистрировать. На основе полученных результатов были подготовлены и опубликованы две статьи:

  1. Rodion Stepanov, Andrey Sozykin, Distributed PIV Technology: Network Storage Usage // CEUR Workshop Proceedings (ISSN 1613-0073), 2017, v. 1989, pp. 121-129.
  2. В. А. Щапов, А. В. Евграфова, Г. Ф. Масич и др. «Применение суперкомпьютерной обработки данных от измерительных систем для проведения экспериментов с обратной связью» // Программные системы : теория и приложения, 2018,9:1(36), с. 3–19. DOI: https://doi.org/10.25209/2079-3316-2018-1-1-3-19

Основные результаты первого года проекта:
1. Описана нестационарная фаза формирования конвективного течения над локализованным источником тепла во вращающемся слое жидкости, для двух вариантов нагрева - фиксированного теплового потока или постоянной температуры. Реконструированы поля скорости в различных сечениях, исследована зависимость характеристик течения (в выделенных сечениях) от времени.

rffi ural 17 45 590846 p a img1

Рис. 1. Конвективные структуры в нестационарной фазе формирования циклонического вихря для различных моментов времени от начала нагрева: 1 – 16 с, 2 – 24 с, 3 – 32 с, 4 - 40 с. Период вращения T=37 с.

rffi ural 17 45 590846 p a img2

Рис.2. Схема обработки экспериментальных данных на суперкомпьютере.

Для реализации контролируемой связи между интенсивностью нагрева и скоростью течения было разработано и апробировано программное обеспечение, которое позволяет проводить целый ряд операций: сбор экспериментальных данных, передачу данных на вычислительные узлы, обработку экспериментальных данных методом PIV, передачу обработанных данных на управляющий компьютер, управление нагревом на основе функциональной связи между скоростью течения и мощностью нагрева.

rffi ural 17 45 590846 p a img3

Рис. 3. Слева - зависимость мощности нагрева (в процентах от максимальной); справа – зависимость кинетической энергии циклонического движения в области.

На Рис.3. показаны временные зависимости мощности нагрева (пропорциональной средней радиальной скорости) и кинетической энергии циклонического движения. Хорошо видно, что при заданной связи между мощностью и скоростью течения выход на квазистационарный режим происходит достаточно быстро (за время 5-6 оборотов модели). Характерные колебания средней скорости и кинетической энергии являются особенностью конвективных вихревых течений в рассматриваемой системе.

rffi ural 17 45 590846 p a img4

Рис. 4. Векторные поля скорости, слева для t=100 с, справа для t=1500 с.

На Рис.4. показаны векторные поля скорости для двух моментов времени, показывающие различные стадии формирования циклонического вихря. Проведенный эксперимент показал работоспособность сложной связки системы измерений, многопроцессорной вычислительной системы и системы контроля нагрева.

Здесь планируется размещать Веб-версии сборников статей