- Информация о материале
- Категория: Конкурсы Российского научного фонда (РНФ)
- Опубликовано: 15 декабря 2022
- Просмотров: 589
Проект направлен на решение проблемы, заключающейся в том, что эффективность и надежность систем охлаждения ядерных энергоустановок, использующих жидкометаллический теплоноситель, может снижаться при продолжительной эксплуатации. Негативные явления возникают на фоне загрязнения металла. В проекте выполняется исследование фундаментальных основ характерных магнитогидродинамических процессов, с конечной целью создания методов анализа и прогнозирования, а также разработки конкретных технологических решений.
Проведено математическое моделирование процесса сепарации непроводящих частиц в ячейке. Использован комбинированный лагранжевый-эйлеровый подход. Показано, что при фиксированной величине внешнего магнитного поля и размерах частиц скорость течения жидкости на входе в ячейку оказывает относительно малое влияние на эффективность сепарации. Построены зависимости коэффициента сепарации от времени при различных значениях внешнего магнитного поля и диаметрах частиц. Определены зависимости эффективности раздела фаз от параметров различных конфигураций, создающих электромагнитные силы в исследуемой ячейке, а также от параметров межфазного взаимодействия.
При наложении внешнего магнитного поля на электропроводящую среду, по которой течет ток, возникает электромагнитная сила, приводящая в движение среду. Структура течения определяется топологией растекания электрического тока, которая, в свою очередь, определяется количеством и формой примесей в электропроводящей среде. Получены зависимости электромагнитной силы от отношения размеров частиц и мезообъема, для разных способов создания электромагнитных сил, а также параметров процесса и двухфазной среды.
Выполнены эксперименты на сепарационной ячейке, представляющей собой вертикально расположенную плоскую прямоугольную кювету из оргстекла с рядом аккумулирующих перегородок, задерживающих сепарированную примесь в области между ними, с двумя электродами для пропускания тока вдоль кюветы. Ячейка помещена в магнитное поле. Измерения проводились при помощи ультразвукового доплеровского анемометра (УДА). Для верификации расчетов гидродинамических процессов было проведено экспериментальное исследование процесса МГД-воздействия на включения. Средой являлся раствор электролита, а второй фазой и трассерами - частицы сажи. В верификационном эксперименте была специально создана неоднородность электромагнитной силы, которая привела к генерации достаточно интенсивного вихревого течения. Результаты расчетов демонстрируют неплохое согласие с экспериментом. В экспериментах по процессу электромагнитного осаждения, пространстве между перегородками возникают паразитные вторичные течения. Интенсивность таких течений невелика, но этого оказывается достаточно для постепенного вымывания примеси из области аккумуляции и затруднения анализа изучаемого процесса. Все указанные трудности приводят к тому, что моделируемый процесс хоть и демонстрирует свою работоспособность, но имеет низкую эффективность на электролите. Для работы с химически активными расплавами жидких металлов наиболее подходит индукционный метод измерений электропроводности. В ходе выполнения проекта был разработан и изготовлен портативный индукционный датчик электропроводности металлов. Было определено, что датчик способен различать между собой образцы металлов и сплавов с разной электропроводностью, а также регистрировать изменение концентрации меди в оловянно-свинцовых цилиндрах. Таким образом, выполнено экспериментальное исследование индукционной методики определения электропроводности на твердых цилиндрических образцах металлов и их сплавов с известными электрическими проводимостями.
Исследованы магнитогидродинамические процессы, возникающие в коаксиальном канале индукционного электромагнитного насоса для жидкого металла. Численно и экспериментально исследованы расходно-напорные характеристики индукционного насоса бегущего магнитного поля. Результаты, полученные при решении данной задачи позволяют утверждать, что проблему оперативного определения электропроводности можно преодолеть с помощью анализа характеристик электромагнитного насоса, который всегда присутствует в подобных системах очистки теплоносителя и контроля его свойств. Обнаружено, что расчетное значение частоты электрического тока, обеспечивающее экстремум напора, совпадает с экспериментальным, если в расчетах взята электропроводность галлиевой эвтектики. Таким образом, с помощью математического моделирования и физических измерений можно определять неизвестное текущее значение электропроводности. Это позволяет разработать еще одну методику определения электропроводности, основанную на измерении характеристик насоса.
Численно и экспериментально изучался процесс взаимодействия движущейся в канале электропроводной среды с внешним магнитным полем. Получены безразмерные уравнения, описывающие динамику жидкости с неоднородными свойствами под действием внешнего магнитного поля, которые решались в некотором диапазоне параметров. Показано, что линейное распределение неоднородности приводит к появлению несимметрии профиля течения. Выявлено, что начиная с некоторых значений управляющих параметров в профилях скорости появляются точки перегиба. Для учета явления переноса поля выполнено исследование, в котором определялась степень смещения магнитного поля относительно исходного положения в зависимости от скорости потока электропроводной среды при числах Рейнольдса больше единицы. Исследование переноса локализованного магнитного поля потоком движущейся электропроводной среды показало, что при существенных скоростях среды происходит относительно небольшое смещение максимума магнитного поля относительно исходного положения. Экспериментальное исследование проводилось с использованием галлиевого контура. В случае приварки контактов к стенке, измерительная система показала полную неспособность определять расход. В случае использования электрической изоляции между жидким металлом и измерительными контактами, эдс показывает практически линейную зависимость от расхода. В данном случае очевидны преимущества использования электрической изоляции для контактов для повышения как способности измерения, так и чувствительности.
Разработана эскизная схема размещения МГД комплекса с условием компоновки существующего натриевого испытательного стенда: силовой каркас, на котором будут монтироваться все устройства комплекса. Выполнена предварительная планировка размещения сепарационной ячейки для разделения фаз электропроводной среды. Изготовлены элементы лабораторной установки. Наиболее сложным для разработки и изготовления является канал для электромагнитного насоса, который будет осуществлять циркуляцию духфазной среды в лабораторной установке разделения фаз. На следующем этапе начатые работы по изготовлению электромагнитного насоса и сепарирующей ячейки будут полностью завершены.
Таким образом, все поставленные на первый этап задачи были решены. В ходе выполнения первого этапа проекта были опубликованы две запланированные статьи. Трое участников проекта сделали четыре доклада о результатах работ по проекту на трех конференциях. Результаты выполнения первого этапа проекта заложили основу для выполнения второго этапа проекта, обеспечив хорошие возможности для достижения поставленных целей.