Проект состоит в экспериментальном и теоретическом исследовании процесса возникновения вторичных движений жидкости (вихрей) в конвективных системах с границей раздела, содержащей адсорбированную плёнку поверхностно-активного вещества (ПАВ). Основной целью проекта является определение структуры устойчивого режима течения в задаче о всплывающем в растворе ПАВ пузырьке газа. Для достижения поставленной цели в работе также проводятся исследования развития неустойчивости аналогичной природы в системах с более простой геометрией (плоской поверхности). Эти задачи являются фундаментом многих технологических процессов, основанных на межфазном массообмене, что делает заявляемые исследования актуальными и востребованными на рынке.

Несмотря на интенсивные исследования в этой области за последние четверть века, задача до сих пор далека от завершения. Связано это, в первую очередь, с отсутствием хотя бы приближенного аналитического решения (ввиду сложности задачи), которое можно было бы исследовать на устойчивость. Все исследования ведутся методами численного эксперимента, который необходим для проверки сложной математической модели, содержащей большое число управляющих параметров. При этом в существующих на сегодняшний день моделях, авторы априори считают, что итоговый режим обтекания пузырька обладает осевой симметрией. Верификация такой сложной модели с натурным экспериментом производиться лишь по одному интегральному параметру - по скорости всплытия газовых включений, что, на наш взгляд, оставляет место для возможных ошибок.

Проведенные исследования устойчивости однородного течения от сосредоточенного источника в системе с границей раздела, содержащей молекулы ПАВ, показали, что на поверхности жидкости возникает неустойчивость в виде многовихревого течения, периодического в азимутальном направлении. Есть все основания предполагать, что подобная неустойчивость может развиваться и на сферической поверхности пузырька, обтекаемого однородным потоком раствора ПАВ. Исследование систем с менее сложной геометрией (случай плоской поверхности) с учетом обнаруженного эффекта позволит показать несостоятельность приближения об устойчивости однородного течения на поверхности, занятой ПАВ. С прикладной точки зрения эта работа должна направить поиски корректной модели в новое русло и, в перспективе, к повышению эффективности, упомянутых ранее, технологических процессов.

Аннотация результатов, полученных в 2019 году

В рамках выполнения проекта построена математическая модель, позволяющая описать поведение пленки нерастворимого сурфактанта на поверхности жидкости в цилиндрической кювете при наличии неравномерного нагрева сверху. Решение поставленной краевой задачи осуществлялось путем прямого численного моделирования с использованием математического пакета Comsol Multiphysics.

Тестирование численной модели проводилось на задаче о термокапиллярной конвекции в ячейке Хеле-Шоу при наличии на свободной границе пленки нерастворимого ПАВ. Изучена динамика пленки нерастворимого сурфактанта после отключения нагрева. Результаты расчетов показали, что при смене граничного условия точка стагнации из положения, занимаемого в стационарном режиме, смещается обратно нелинейным образом, а именно при приближении к стенке полости она сначала начинает замедляться, а потом окно резко закрывается. При этом вблизи точки стагнации происходит небольшое накопление ПАВ. Данный эффект качественно согласуется с экспериментальными наблюдениями и связан с наличием течения, развитым в объеме полости, препятствующим продвижению пленки. После уменьшения интенсивности объемного течения пленка беспрепятственно закрывает всю свободную поверхность.

В соответствии с основной задачей проекта при помощи математического пакета Comsol Multiphysics также была протестирована трехмерная численная модель и получены предварительные результаты моделирования динамики изначально однородной пленки сурфактанта на поверхности цилиндрической кюветы в двух случаях: при точечном нагреве в центре и при радиальном линейном распределении теплового потока в зависимости от координаты. Было продемонстрировано смещение ПАВ в холодную область кюветы вследствие возникновения термокапиллярного течения.

В рамках выполнения проекта экспериментально исследованы структуры и устойчивость радиального осесимметричного течения, генерируемого локализованным источником на поверхности воды, покрытой пленкой ПАВ. Опыты проводились в заполненной чистой водой цилиндрической кювете, на оси симметрии которой располагался источник течения. Генерация движения жидкости осуществлялась с помощью нескольких типов локальных источников, которые можно классифицировать по природе движущей силы как поверхностные, объёмные и смешанные. Структура поверхностного и объемного течения визуализировалась путем добавления светорассеивающих частиц с применением метода лазерного ножа. Олеиновая и стеариновая кислоты, существенно отличающиеся поверхностными реологическими свойствами, использовались для создания адсорбированного слоя нерастовримого ПАВ.

Обнаружено, что не зависимо от типа источника на поверхности чистой воды формируется осесимметричное радиальное течение. При наличии адсорбированной пленки ПАВ структура течения определяется как свойствами и поверхностной концентрацией ПАВ, так и характеристиками источника конвективного течения. При относительно мощном источнике на поверхности формируется двухзонная структура течения: радиальное осесимметричное течение в центральной части и застойная зона с вихревым течением на периферии. При уменьшении мощности источника центральная зона коллапсирует, и на всей поверхности визуализируется многовихревое течение. В переделах застойной зоны, вне зависимости от наличия осесимметричной части в центре, может развиваться многовихревое течение, периодическое в азимутальном направлении, но только после формирования объемного течения под ней.

По результатам проделанной работы предложен физический механизм взаимодействия конвективного течения с адсорбированной пленкой и набор безразмерных параметров. Показано, что возникновение и размер центральной зоны определяется величиной параметра упругости E, равного отношению касательных напряжений, создаваемых на поверхности пленкой ПАВ и источником конвективного движения. При 0<eДля проведения работ, запланированных на второй год реализации проекта, осуществлена разработка и сборка экспериментальной установки по визуализации течения на поверхности пузырька газа, обтекаемого однородным потоком ПАВ. На примере задачи Стокса об обтекании твердой сферы выбран оптимальный метод визуализации, определен рабочий диапазон управляющих параметров эксперимента. Для работы с газовыми включениями осуществлен подбор веществ, сформирована база данных их физико-химических свойств.

Аннотация результатов, полученных в 2020/21 году

В рамках задачи о теоретическом исследовании возникновения азимутальных вихрей под пленкой нерастворимого сурфактанта численно решена трехмерная задача о натекании радиально-симметричного течения на твердую плёнку, имитирующую пленку неподвижного нерастворимого сурфактанта. Результаты моделирования показали, что после натекания жидкости на пластину возникает неустойчивость, приводящая к многовихревому течению с образованием азимутальных вихрей. В ходе численного моделирования был показан непрерывный переход от радиально-симметричных вихрей к течению с закруткой в преимущественно азимутальном направлении под пленкой при увеличении скорости натекания, которая регулировалась изменением интенсивности нагрева. Продемонстрировано, что при увеличении площади закрытия свободной поверхности пленкой течение в азимутальной плоскости формируется при более слабом нагреве.

В рамках реализации проекта проведено экспериментальное исследование, направленное на выявление и изучение условий, приводящих к развитию неустойчивости течения на поверхности сферического газового включения, омываемого осесиммметричным потоком жидкости. Эксперименты осуществлялись на неподвижном в лабораторной системе отсчёта пузырьке газа, подвешенного на оси потока. Показано, что вариация размера пузырька, скорости потока, степени загрязнения системы влияют на структуру поверхностного течения. Обнаружено, что на поверхности газового включения при некотором критическом значении управляющих параметров задачи происходит формирование двухвихревого течения (первая мода неустойчивости). Наблюдаемая неустойчивость согласуется с результатами экспериментов, полученных при работе на плоской поверхности. Проведенные исследования помогают сузить диапазон варьируемых параметров в численном эксперименте и внести ясность в природу явлений, протекающих на границе раздела двух фаз и вблизи нее. На наш взгляд в случае свободно всплывающего пузырька газа малого диаметра наблюдаемая неустойчивость ответственна за спиральную траекторию всплытия. Для пузырьков газа диаметром 1-2 мм такой характер движения до сих пор не имеет общепризнанного объяснения, в отличие от пузырьков большего размера, где отклонение от сферической формы оказывает существенное влияние на смену траектории. Эксперименты, проведенные с растворами DTAB, Triton X-100 и 1-Hexanol, показали, что эволюция развития поверхностного течения на поверхности пузырька аналогично той, что описана для случая остаточных примесей в системе с водой. Ожидаемый эффект ремобилизации поверхности в растворах 1-Hexanol, равно как и эффект стагнации поверхности при использовании в экспериментах раствора Triton X-100, не наблюдалось. Напротив, эксперименты, проведенные при скоростях потока порядка 100 мм/с для всех используемых в работе веществ, показали достаточную подвижность поверхности для формирования вихревого движения на поверхности пузырька.

Результаты исследований демонстрируют необходимость корректировки математической модели для одной из базовых задач межфазной гидродинамики о всплытии пузырька газа. Наличие вихревых структур на поверхности всплывающего пузырька также должно сказаться на нюансах взаимодействия нескольких пузырьков между собой и с мелкодисперсной твёрдой фракцией в потоке, что является основой таких технологий как флотация, экстракция и других, связанных с межфазным массобменом. В перспективе предлагаемые исследования должны позволить повысить эффективность таких технологий.

Видео материалы по результатам экспериментального исследования приведены на канале YouTube:

https://www.youtube.com/playlist?list=PLkz1oHAHbLXe6X7u9b0V7kFeg5KghFo5Q

Статьи, принятые в печать и находящиеся на стадии рецензирования доступны на портале arxiv.org:

- A. Shmyrova, A. Shmyrov Experimental study of the flow structure stability on the bubble surface // Journal of Physics Conference Series, IOP Publishing Ltd., принята в печать: https://arxiv.org/abs/2105.02620

- V.A. Demin, M.I. Petukhov, A.I. Shmyrova 3D instability of a toroidal flow in the liquid partially covered by a solid film // Journal of Physics Conference Series, IOP Publishing Ltd., принята в печать: https://arxiv.org/abs/2105.02624

- A. Mizev, A. Shmyrov, A. Shmyrova On the shear-driven surfactant layer instability // Journal of Fluid Mechanics, находится на стадии рецензирования: https://arxiv.org/abs/2101.02485

Публикации

  1. Шмыров А.В., Шмырова А.И. (Shmyrov A.V., Shmyrova A.I.) Экспериментальное исследование азимутальной неустойчивости осесимметричного течения в присутствии пленки ПАВ Сборник материалов VI Всероссийской конференции Пермские гидродинамические научные чтения. Пермь. 28–29 ноябрь 2019 г. c. 200-202 (2019 г.)
  2. А. И. Шмырова, А. В. Шмыров (A. I. Shmyrova, A. V. Shmyrov) О механизмах, приводящих к формированию вихревых структур на границе раздела жидкость-газ в присутствии адсорбционного слоя Вестник Пермского университета. Физика (2020 г.)
  3. А. И. Шмырова, А. В. Шмыров (A. I. Shmyrova, A. V. Shmyrov) Механизмы формирования вихревых структур на границе раздела жидкость-газ в присутствии адсорбционного слоя Вестник Пермского университета. Физика Вып. 3, с. 31–38 https://doi.org/10.17072/1994-3598-2020-3-31-38 (2020 г.)
  4. А.И. Шмырова, А.В. Шмыров, А.И. Мизёв (A.I. Shmyrova, A.V. Shmyrov, A.I. Mizev) Неустойчивость симметрии течения вблизи границы раздела, покрытой поверхностно-активным веществом Сборник материалов 11-ой международной конференции - школа молодых ученых "Волны и вихри в сложных средах", 01-03 декабря 2020, Москва: ООО «ИСПО-принт» с. 240-243 (2020 г.)
  5. Демин В.А., Петухов М.И., Шмыров А.В., Шмырова А.И. (Demin V.A., Petukhov M.I., Shmyrov A.V., Shmyrova A.I.) Nonlinear dynamics of the film of an insoluble surfactant during the relaxation to equilibrium Interfacial Phenomena and Heat Transfer Том: 8, Выпуск: 3, Стр.: 261-271 https://doi.org/10.1615/InterfacPhenomHeatTransfer.2020035273 (2020 г.)
  6. Демин В.А., Петухов М.И., Шмыров А.В., Шмырова А.И. (Demin V.A., Petukhov M.I., Shmyrov A.V., Shmyrova A.I.) Динамика закрытия окна в пленке нерастворимого сурфактанта на поверхности жидкости Материалы региональной научно-практической конференции студентов, аспирантов и молодых ученых Вып. 13, с. 164-169 (2020 г.)
  7. Демин В.А., Петухов М.И., Шмыров А.В., Шмырова А.И. (Demin V.A., Petukhov M.I., Shmyrov A.V., Shmyrova A.I.) К вопросу о динамике плёнки нерастворимого пав на поверхности жидкости Сборник тезисов докладов VII Всероссийской конференции с участием зарубежных учёных «Задачи со свободными границами: теория, эксперимент и приложения» с. 66-67 (2020 г.)
  8. Демин В.А., Петухов М.И., Шмырова А.И., Шмыров А.В. (Demin V.A., Petukhov M.I., Shmyrov A.V., Shmyrova A.I.) О поведении пленки нерастворимого сурфактанта при переходе в равновесие Пермские гидродинамические научные чтения: материалы всероссийской конференции с международным участием, посвященной памяти профессоров Г. З. Гершуни, Е. М. Жуховицкого и Д. В. Любимова с. 155-161 (2020 г.)
  9. Шмырова А.И., Шмыров А.В. (Shmyrova A.I., Shmyrov A.V.) Обобщение результатов экспериментального исследования устойчивости осесимметричного течения вблизи пленки ПАВ Сборник тезисов докладов VII Всероссийской конференции с участием зарубежных учёных «Задачи со свободными границами: теория, эксперимент и приложения» с. 228-229 (2020 г.)
  10. А. Шмырова, А. Шмыров (Anastasia Shmyrova and Andrey Shmyrov) Experimental study of the flow structure stability on the bubble surface Journal of Physics Conference Series, IOP Publishing Ltd. (2021 г.)
    11. В.А. Демин, М.И. Петухов, А.И. Шмырова (V.A. Demin, M.I. Petukhov, A.I. Shmyrova)
  11. 3D instability of a toroidal flow in the liquid partially covered by a solid film Journal of Physics Conference Series, IOP Publishing Ltd. (2021 г.)
  12. Демин В.А., Петухов М.И., Шмыров А.В., Шмырова А.И. (V.A. Demin, M.I. Petukhov, A.V. Shmyrov, A.I. Shmyrova) Механизм образования азимутальных вихрей при натекании радиально-симметричного течения на пленку неподвижного сурфактанта XХII Зимняя школа по механике сплошных сред, Пермь, 22 – 26 марта 2021 г. Тезисы докладов с. 113 (2021 г.)
  13. Шмырова А.И., Шмыров А.В. (Shmyrova A.I., Shmyrov A.V.) Экспериментальное исследование неустойчивости течения на поверхности пузырька газа XХII Зимняя школа по механике сплошных сред, Пермь, 22 – 26 марта 2021 г. Тезисы докладов с. 355 (2021 г.)

Информация о проекте на сайте РНФ: https://rscf.ru/contests/search-projects/19-71-00097

The second School for Young Scientists «Monitoring of Natural and Technogenic Systems»

16-18 November 2020, Perm

First Announcement

The Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences announces the holding of the School for Young Scientists “Monitoring of Natural and Technogenic Systems” from November 16 to 18, 2020, which is organized with financial support from the Russian Science Foundation as part of project No. 19-77-30008.

Online translations are accessible thow links:

Read more: The second School for Young Scientists «Monitoring of Natural and Technogenic Systems»

Проект РФФИ 19-41 590004. Руководитель Васильев А. Ю.

На первом этапе экспериментально исследована структура и динамика крупномасштабной циркуляции в турбулентной конвекции Рэлея-Бенара для жидкостей с умеренными и высокими числами Прандтля.  Экспериментальная установка представляет собой кубическую полость со стороной L=250 мм (см. рис.1). В качестве рабочих жидкостей выступала дистиллированная вода, 25 % водный раствор пропиленгликоля и чистый пропиленгликоль. Эксперименты проводились при средних температурах жидкости 50 и 25 oС (для воды) и 20 oС (для 25 % водного раствора пропиленгликоля и чистого пропиленгликоля), что соответствует средним числам Прандтля Pr=3.5, Pr=6.1 и Pr=64. Разложение двумерных полей скорости на фурье-моды показало, что при изменении числа Прандтля от 3.5 до 24 в течении доминирует одна крупномасштабная мода (см. рис. 1). При дальнейшем росте числа Прандтля структура течения существенно меняется и энергия распределяется между несколькими основными фурье-модами. Происходит также существенное изменение временной динамики доминирующей моды.

rffi 19 41 590004 img1 1

Рис.1 Экспериментальная установка в разрезе: 1 – медный теплообменник, 2 – плексигласовые боковые стенки толщиной d=25 мм, 3 – теплоизолятор. Нормированная энергия фурье-мод: (а) – Pr=6.1, Ra=2.0·109, (б) - Pr=24, Ra=1.3·109, (в) - Pr=64, Ra=1.3·109

Большое внимание было уделено численному моделированию конвективной турбулентности с неоднородным нагревом при умеренных и высоких числах Рэлея (10^7<ra<2x10^9). Неоднородный нагрев создавался только на нижней границе кубической полости при помощи смешанных граничных условий (см. рис.2). На границе были выделены «проводящие» области, которые поддерживались при постоянной температуре, а оставшаяся часть границы считалась теплоизолированной, т.е. тепловой проток равен нулю. В расчетах рассматривались три конфигурации распределения нагреваемых областей: (I) - локализованный нагрев; (II) - девять нагревателей одинакового размера, равноудаленные друг от друга; (III) – комбинация из нагреваемых областей трех размеров с неоднородным распределением по пространству.

Обнаружено, что при Ra=10^7 эффективность переноса тепла сильно зависит от распределения нагреваемых областей на нижней границе. Максимальные отличия в числе Нуссельта достигают 20%. В более развитом режиме (Ra=1.1x10^9) отличия не превышают 5%, поскольку турбулентность эффективнее перемешивает среду. При неоднородном нагреве показатель степени в зависимости числа Нуссельта от числа Рэлея может принимать два значения: beta~2/7 для конфигураций (I) и (II); beta~1/3 для конфигурации (III) (см. рис.3).

rffi 19 41 590004 img1 2

Рис.2 Схема вычислительной области. Варианты распределения нагреваемых областей. Черным цветом отмечены нагреваемые области.

rffi 19 41 590004 img1 3

Рис.3 Зависимость числа Нуссельта от числа Релея в двойных логарифмических координатах, где индексами обозначено: 1 – локализованный нагрев, 9 – девять нагревательных областей, F – комбинация из нагреваемых областей трех размеров. Штриховые линии показывают степенные законы Nu~Raβ.

Кроме того, исследовано влияние многомасштабного рельефа поверхности теплообменника на процессы переноса тепла в замкнутой полости. Задача решалась в сопряженной постановке. Нижний теплообменник представлял собой медную плиту толщиной 10 мм, на поверхности которой имеются выступающие прямоугольные элементы. Комбинация из элементов трех разных размеров в поперечном сечении формирует фрактальную топологию поверхности теплообменника. На рис.4 показаны распределения температуры в медном массиве и зависимости числа Нуссельта от числа Релея для двух высот рельефа.

rffi 19 41 590004 img1 4

Рис.4 Левая панель – распределение температуры на поверхности теплообменника. Правая панель – зависимость числа Нуссельта от числа Релея в двойных логарифмических координатах: ● – h/L=0.1, ■ - h/L=0.05. Штриховые линии показывают степенные законы Nu~Raβ.

II Этап (2020)

На втором этапе проекта было продолжено исследование влияния смешанных граничных условий на процессы теплообмена при помощи численного моделирования. Рассматривалась конфигурация, представляющая собой 225 нагреваемых областей одинакового размера, равноудаленных друг от друга. Результаты численного моделирования сравнивались с результатами следующих конфигураций нагрева: локализованный нагрев; девять нагревателей одинакового размера, равноудаленные друг от друга; комбинация из нагреваемых областей трех размеров с неоднородным распределением по пространству. Во всех конфигурациях площадь нагрева одинаковая и составляет 30% от площади верхней границы. Расчеты были выполнены для Pr=6.46 и Ra=107. В случае с 225 нагревателями наблюдается наибольший конвективный тепловой поток – примерно 71% от случая с однородными граничными условиями. Тепловой поток со смешанными граничными условиями сильно неоднородный и определяется толщиной температурного пограничного слоя. Неоднородность температурного пограничного слоя (см. рис.1) является результатом нескольких факторов: структура крупномасштабной циркуляции и мелкомасштабные движения над нагреваемыми областями. Горизонтальный размер нагреваемых областей является ограничивающим фактором для толщины пограничного слоя, поэтому, чем меньше нагреваемая область, тем тоньше пограничный слой. Это означает, что тепловой поток увеличивается с уменьшением размеров нагреваемых областей. Толщина теплового пограничного слоя может быть меньше, чем для конвекции Рэлея – Бенара с однородными граничными условиями.

rffi 19 41 590004 img2 1
Рис.1. Осредненная по времени нормированная толщина температурного пограничного слоя δ*= δ/δ0, где δ0 средняя толщина температурного пограничного слоя для конвекции Рэлея – Бенара с однородными граничными условиями.

Большое внимание было уделено экспериментальному исследованию влияния многомасштабного рельефа поверхности на процессы теплообмена в конвективной турбулентности. Эксперименты проводились в кубической полости с длиной ребра L=250 мм. В качестве рабочей жидкости выступала дистиллированная вода (Pr=6.12) и силиконовое масло ПМС-5 (Pr=62). Нижний теплообменник представлял собой медную плиту толщиной 10 мм, на поверхности которой имеются выступающие прямоугольные элементы. Комбинация из элементов трех разных размеров в поперечном сечении L/3, L/9, L/27, вытянутые на разную высоту h1=10 мм, h2=5 мм, h3=2.5 мм, соответственно. В экспериментах относительное увеличение площади поверхности (отношение площади рельефной поверхности к площади верхней границы) составляет Cs=1.22. На рис.2 представлены зависимости числа Нуссельта от числа Рэлея. Эксперименты показали, что тепловой поток в случае рельефной поверхности всегда больше, чем для гладкой поверхности. Из рис. 2 (левая панель) видно, что число Нуссельта в случае Pr=62 приблизительно на 8% больше, чем для Pr=6.12 при одинаковых числах Рэлея. Однако с увеличением числа Рэлея эта разница уменьшается. Теория предсказывает степенной закон для зависимости числа Нуссельта от числа Рэлея Nu~Raβ. Показатель степени β уменьшается с увеличением Pr: β=0.39 (Pr=6.12) и β ~1/3 (Pr=62). Обнаружено, что увеличение теплопереноса при Pr=6.12 меньше, по сравнению с относительным увеличением площади теплообмена из-за выступающих элементов (см. рис.2, правая панель). Ситуация существенно меняется при Pr=62. В этом случае наблюдается положительный эффект от использования многомасштабного рельефа поверхности, который заключается в усилении теплообмена по сравнению с относительным увеличением площади.

rffi 19 41 590004 img2 2

Рис.2 Зависимость числа Нуссельта от числа Рэлея в двойных логарифмических координатах. На правом графике пунктирные линии показывают увеличение теплового потока за счет дополнительной площади выступающих элементов: синяя линия – Pr=6.12, красная линия – Pr=62.


Кроме того, было выполнено численное моделирование конвективной турбулентности в случае с многомасштабным рельефом нижней границы. В расчетах рассматривались две конфигурации многомасштабного рельефа. Первая конфигурация (см. рис.3а) представляет собой комбинацию выступающих элементов прямоугольной формы с поперечными размерами L/3, L/9, L/27, вытянутые на разную высоту h1/L=0.04, h2/L=0.02, h3/L=0.01, соответственно. Для данной конфигурации расчеты были выполнены для Pr=6.12, числа Рэлея варьировались от 106 до 2×109. Обнаружено два режима теплопередачи. Первый режим характеризуется β ~ 1/3 в интервале чисел Рэлея от 106 до 2×107. Второй режим наблюдается при больших числах Рэлея и характеризуется β ~ 0.40.
Вторая конфигурация рельефа представлена на рис.3б. Поперечный размер выступающих элементов одинаковый и равен L/27. Отношение высоты выступающих элементов к высоте кубической полости h/L варьируется от 0.04 до 0.01. Площадь рельефной поверхности в Cs=1.61 раз больше площади плоской верхней границы. В случае второй конфигурации расчеты были выполнены для Pr=6.12, и число Рэлея варьировалось от 106 до 2×107. В этом случае наблюдается только один режим, который характеризуется β~1/3. Числа Нуссельта имеют близкие значения для двух конфигураций рельефа. Наибольшее отличие в тепловых потоках составляет около 10% для Ra=1.13×107.

rffi 19 41 590004 img2 3
Рис.3 (а, б) - конфигурации рельефа нижней границе. (с) - Зависимость числа Нуссельта от числа Релея в двойных логарифмических координатах: ● – первая конфигурация, ■ – вторая конфигурация. Штриховые линии показывают степенные законы Nu~Raβ.

.

Этап №1 Обновление научно-исследовательской инфраструктуры ЦКП

Соглашение от 01.11.2019 № 075-15-2019-1655 

Номер гос. регистрации АААА-А19-119121390036-8

Уникальный идентификатор проекта RFMEFI62119X0031

Приоритетное направление: Информационно-телекоммуникационные системы (ИТ)

Период выполнения: 01 ноября 2019 г. – 31 декабря 2019 г.

Получатель субсидии: Федеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук (ПФИЦ УрО РАН)

  1. Цель проекта

Реализация проекта направлена на развитие научно-исследовательской инфраструктуры центра коллективного пользования (ЦКП) «Исследования материалов и вещества»  ПФИЦ УрО РАН для обеспечения поддержки реализации приоритетов научно-технологического развития, в том числе в кооперации с ведущими мировыми научными центрами, расширение перечня и комплексности оказываемых услуг, а также круга пользователей для обеспечения максимальной загрузки оборудования ЦКП и обеспечения эффективного участия в реализации стратегии научно-технологического развития Российской Федерации.

  1. Основные результаты проекта

В рамках первого этапа выполнения работы по гранту ФЦП была организована закупка дорогостоящего импортного оборудования, позволяющего существенно расширить функциональные возможности ЦКП «Исследования материалов и веществ» ПФИЦ УрО РАН. Средства субсидии в полном объеме были потрачены за закупку оборудования, что позволило приобрести уникальные приборы, аналогов которых нет не только в Пермском крае, но и в Уральском регионе. Приобретенное оборудование позволяет проводить комплексные исследования механических свойств природных и конструкционных структурно-неоднородных материалов, развивать научные основы применения современных оптико-волоконных технологий для мониторинга нагруженных элементов конструкций, проводить комплексные структурные, химические и физические исследования новых материалов, химических соединений и биологических структур.

В 2019 году было приобретено следующее оборудование:

  1. Установка срезная ГТ 1.2.12 (Россия).
  2. Установка объемного сжатия для испытания скальных грунтов АСИС (Россия).
  3. Комплекс оборудования для физико-химического, термомеханического анализа полимерных композиционных материалов METTLER TOLEDO (Швейцация) в составе: дифференциального сканирующего калориметра DSC, прибора для термогравиметрического анализа и дифференциальной калориметрии TGA/DSC, прибора термомеханического и дифференциального термического анализа TMA/SDTA, прибора для динамического механического анализа DMA/SDTA.
  4. Рентгеновский дифрактометр PANalytical Aeris Research (PANalytical, Великобритания).
  5. Газовый хроматограф с масс-селективным детектором 7890В Agilent (США).
  6. Оптический рефлектометр обратного рассеяния OBR4600 LUNA (США).
  7. Инвертированный флуоресцентный лабораторный микроскоп Olympus CKX53 (Япония).

В интересах сторонних заказчиков были проведены научные исследования по комплексным темам «Исследование минералого-петрографического состава и физико- механических свойств пород и руд, вскрытых при разведке и отработке Верхнекамского и других месторождений солей для прогнозирования их свойств и обеспечения безопасности подземной разработки» и «Разработка методов испытаний линий волоконно-оптических датчиков с нанесенными решетками Брэгга в составе образцов из полимерных композиционных материалов», разработаны проекты методик испытаний линий волоконно-оптических датчиков с нанесёнными решётками Брэгга в составе образцов из полимерных композиционных материалов, разработан проект методики температурной компенсации при проведении испытаний волоконно-оптических линий с ВБР-датчиками в составе образцов из ПКМ, разработан проект методики верификации результатов испытаний волоконно-оптических линий с ВБР-датчиками в составе образцов из ПКМ.

За отчетный период ЦКП «Исследования материалов и вещества» ПФИЦ УрО РАН увеличена доля внешних заказов услуг и работ по сравнению с 2018 годом более чем на 20% (см. отчеты ЦКП «Исследования материалов и вещества» ПФИЦ УрО РАН за 2018 г. (№ 606812) и за 2019 г. (№ 692546)). В 2019 году количество внешних организаций-пользователей научным оборудованием составило 30 единиц против 16 в 2018 г. Загрузка оборудования ЦКП в 2019 г. в интересах третьих лиц составила 73.96%.

The School for Young Scientists “Monitoring of Natural and Technogenic Systems”, November 25 to 27, 2019, Perm

 

NEW! The program of School is available (PDF).

Online translations are accessible thow links:

 

Second Announcement

The Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences announces the holding of the School for Young Scientists “Monitoring of Natural and Technogenic Systems” from November 25 to 27, 2019, which is organized with financial support from the Russian Science Foundation as part of project No. 19-77-30008.
The program of the School, including lectures by leading Russian and foreign scientists, is available on the website https://www.icmm.ru/nauka/konferentsii and in the Attachment to this announcement. The program is being currently brought up to a desired format by including additional papers.

The program of the School of Young Scientists is included in the plan of the Russian National Committee on Theoretical and Applied Mechanics, is approved by the Technical Committee 17 (Non-Destructive Assessment)of the European Society for Structural Integrity (ESIS), and the Russian Committee of ESIS and corresponds to the theme of the Perm scientific-educational center of world level «Rational subsoil use»

Application for participation

The on-line registration of all conference participants is mandatory at the school website before 10 November, 2019.

The School is planned to be non-contributory (free of the conference fee)

Location
The School will be held in Perm under the auspices of PFRC UB RAS at the address: Perm, Acad. Korolev Str. 3. The participants will be lodged at Perm hotels. More useful information about the rates and hotel descriptions can be found at http://hotel.perm.ru/. The on-line city map is available at the site: http://perm.2gis.ru/

Dates to remember
October 10, 2019 – the third announcement containing the Program of the School;
Before October 10, 2019 - registration of the School participants

Contact address:
PFRC UB RAS
Acad. Korolev St. 1
Executive Secretary
Yurlova Natalia
This email address is being protected from spambots. You need JavaScript enabled to view it.
Tel: +7 (342) 237 83 20

Read more: The School for Young Scientists - Second Announcement

Subcategories

Здесь планируется размещать Веб-версии сборников статей