Печать

Содержание


Введение

HDLC - протокол высокоуровнего управления каналом передачи данных, является опубликованным ISO стандартом и базовым для построения других протоколов канального уровня (SDLC, LAP, LAPB, LAPD, LAPX и LLC). Он реализует механизм управления потоком посредством непрерывного ARQ (скользящее окно) и имеет необязательные возможности (опции), поддерживающие полудуплексную и полнодуплексную передачу, одноточечную и многоточечную конфигурации, а так же коммутируемые и некоммутируемые каналы.

 

Типы, логические состояния и режимы работы станций. Способы конфигурирования канала связи.

Существует три типа станций HDLC:

Три логических состояния, в которых могут находиться станции в процессе взаимодействия друг с другом.

Три режима работы станции в состоянии передачи информации, которые могут устанавливаться и отменяться в любой момент.

Три способа конфигурирования канала для обеспечения совместимости взаимодействий между станциями, использующих основные элементы процедур HDLC и способных в процессе работы менять свой статус (первичная, вторичная, комбинированная):

 

Управление потоком

Управление потоком в HDLC осуществляется с помощью передающих и принимающих окон. Окно устанавливается на каждом конце канала связи, чтобы обеспечить резервирование ресурсов обеих станций. Этими ресурсами могут быть ресурсы вычислителя или пространство буфера. В большинстве случаев окно обеспечивает и буферное пространство, и правила нумерации (сообщений). Окно устанавливается во время инициирования сеанса связи между станциями. Если станция А и станция В должны обменяться данными, А резервирует окно для В, а В резервирует окно для А. Использование окон необходимо для полнодуплексных протоколов, потому что они подразумевают непрерывный поток кадров в принимающий узел без периодических подтверждений с остановкой и ожиданием.

Переменные состояния станции V(S) и V(R).Окна в принимающем и передающем узлах управляются переменными состояния, которые представляют по сути состояние счетчика. Передающий узел поддерживает переменную состояния посылки V(S). Это порядковый номер следующего по очереди I-кадра, который должен быть передан. Принимающий узел поддерживает переменную состояния приема V(R), которая содержит номер, который, как ожидается, является порядковым номером следующего I-кадра. V(S) увеличивается на 1 при передаче каждого кадра и помещается в поле порядкового номера посылки кадра. Получив кадр, принимающий узел производит проверку наличия ошибок передачи и сравнивает порядковый номер со своим V(R). Если кадр может быть принят, узел увеличивает V(R) на 1, помещает его в поле порядкового номера приема кадра подтверждения АСК и посылает этот кадр в узел-отправитель, завершая квитирование передачи.

Если V(R) не равен порядковому номеру посылки в кадре или обнаружена ошибка, значит, что-то произошло, и после тайм-аута в узел-отправитель посылается NAK [с порядковым номером приема, содержащим значение V(R)]. В большинстве протоколов этот NAK называется Неприем (REJ) или Выборочный неприем (SREJ). Значение V(R) уведомляет передающее устройство ООД о том, что ожидается посылка нового кадра. Т. к. передатчик восстанавливает старое значение V(S) и повторяет передачу кадра, порядковый номер которого совпадает со значением V(S).

Во многих системах для V(S) и V(R) у порядковых номеров в кадре используются числа 0-7. если переменные состояния в результате последовательного увеличения достигли 7, то, начиная с 0, эти числа снова используются. Вследствие повторного использования чисел устройствам станциям не разрешено посылать кадр с порядковым номером, который не был подтвержден. Например, протокол должен дождаться подтверждения кадра с номером 6, прежде чем он опять использует V(S)=6. Этот процесс показан на рис.1. Здесь кадры с 6 по 4 еще не подтверждены. Если бы был послан еще один кадр с порядковым номером 6, соответствующее подтверждение АСК с номером 6 не позволило бы определить, приход какого кадра с порядковым номером 6 подтверждается.

Использование номеров 0-7 позволяет семи кадрам быть в активном состоянии, прежде, чем "закроется" окно. Несмотря на то что диапазон 0-7 дает восемь порядковых номеров, V(R) содержит значение следующего ожидаемого кадра, что ограничивает число активных кадров до 7.

 

Формат кадра HDLC

На канальном уровне используется термин кадр для обозначения независимого объекта данных, передаваемого от одной станции к другой (рис.1).

Флаг. Все кадры должны начинаться и заканчиваться полями флага "01111110". Станции, подключенные к каналу, постоянно контролируют двоичную последовательность флага. Флаги могут постоянно передаваться по каналу между кадрами HDLC. Для индексации исключительной ситуации в канале могут быть посланы семь подряд идущих единиц. Пятнадцать или большее число единиц поддерживают канал в состоянии покоя. Если принимающая станция обнаружит последовательность битов не являющихся флагом, она тем самым уведомляется о начале кадра, об исключительной (с аварийным завершением) ситуации или ситуации покоя канала. При обнаружении следующей флаговой последовательности станция будет знать, что поступил полный кадр.

Формат кадра HDLC
Флаг Адрес Управляющее поле Информационное поле CRC Флаг

 

Формат управляющего поля кадра HDLC
1 2 3 4 5 6 7 8 Разряды
0 N(S) P/F N(R) I-формат
1 0 S-коды P/F N(R) S-формат
1 1 U-коды P/F U-коды U-формат

Рис.1. Формат кадра и управляющего поля HDLC, где: 
N(S) - порядковый номер передаваемого кадра,
N(R) - порядковый номер принимаемого кадра,
P/F - бит опроса/окончания

 

Адресное поле определяет первичную или вторичную станции, участвующие в передаче конкретного кадра. Каждой станции присваивается уникальный адрес. В несбалансированной системе адресные поля в командах и ответах содержат адрес вторичной станции. В сбалансированных конфигурациях командный кадр содержит адрес получателя, а кадр ответа содержит адрес передающей станции.

Правила адресации  
Первичная
станция А
------ Команда (Адрес В) -----> Вторичная
станция В
Несбалансир.
конфигурация
 
<----- Ответ (Адрес В) ------  
 
Комбинир.
станция
А
----- Команда (Адрес В) -----> Комбинир.
станция
В
Сбалансир.
конфигурация
 
<----- Ответ (Адрес В)------  
<----- Команда (Адрес А) ------  
------ Ответ (Адрес А) ----->  

 

Управляющее поле задает тип команды или ответа, а так же порядковые номера, используемые для отчетности о прохождении данных в канале между первичной и вторичной станциями. Формат и содержание управляющего поля (рис. 1) определяют кадры трех типов: информационные (I), супервизорные (S) и ненумерованные (U).

Информационное поле содержит действительные данные пользователя. Информационное поле имеется только в кадре информационного формата. Его нет в кадре супервизорного или ненумерованного формата. [Примечание: кадры "UI - ненумерованная информация" и "FRMR - Неприем кадра" ненумерованного формата имеют информационное поле].

Поле CRC (контрольная последовательность кадра) используется для обнаружения ошибок передачи между двумя станциями. Передающая станция осуществляет вычисления над потоком данных пользователя, и результат этого вычисления включается в кадр в качестве поля CRC. В свою очередь, принимающая станция производит аналогичные вычисления и сравнивает полученный результат с полем CRC. Если имеет место совпадение, велика вероятность того, что передача произошла без ошибок. В случае несовпадения, возможно, имела место ошибка передачи, и принимающая станция посылает отрицательное подтверждение, означающее, что необходимо повторить передачу кадра. Вычисление CRC называется циклическим контролем по избыточности и использует некоторый производящий полином в соответствии с рекомендацией МККТТ V.41. Этот метод позволяет обнаруживать всевозможные кортежи ошибок длиной не более 16 разрядов, вызываемые одиночной ошибкой, а также 99,9984% всевозможных более длинных кортежей ошибок.

 

Кодонезависимость и синхронизация HDLC

HDLC является кодопрозрачным протоколом. Он не зависит от конкретного кода (ASCII/IA5 или EBCDIC) при выполнении функции управления каналом. Восьмибитовая комбинация флага 01111110 помещается в начале и в конце кадра, чтобы дать возможность приемнику распознать начало и конец кадра. Возможны случаи, когда прикладной процесс помещает в данных пользователя последовательность 01111110, совпадающую с флагом. В этом случае передающая станция в поток выходных данных помещает 0 после 5 подряд идущих единиц, встретившихся в любом месте между начальным и конечным флагами кадра. Такая вставка производится в адресное, управляющее, информационное поля и поле CRC. Этот метод называется вставкой битов(bit staffing); такую же функцию выполняет знак DLE в протоколе BSC. После того как завершается вставка битов в кадр и по концам кадра помещаются флаги, кадр передается приемнику по каналу.

Приемник постоянно контролирует поток битов. При получении нуля с пятью далее идущими подряд единицами (011111) анализирует следующий (седьмой) бит. Если это нуль, он удаляет этот бит. Однако если седьмой бит является единицей (0111111), приемник анализирует восьмой бит. Если это нуль (01111110), он считает, что получена флаговая комбинация. Если это единица, выполняется анализ последующих бит. Возможна ситуация приема либо сигнала покоя, либо сигнала аварийного завершения, на которые станция реагирует соответствующим образом. Таким образом, в протоколе HDLC обеспечиваются кодовая прозрачность по данным. Протоколу безразлично, какие кодовые комбинации находятся в потоке данных. Единственное, что требуется, - это поддерживать уникальность флагов.

HDLC используется также два других сигнала: сигнал аварийного завершения (АЗ) состоит из последовательности единиц, число которых не меньше семи и не больше четырнадцати; состояние покоя представляется последовательностью пятнадцати или большего числа единиц.

Сигнал аварийного завершения (abort) помещается в конце кадра. Передающая станция посылает этот сигнал, когда возникает исключительная ситуация, требующая восстановления. Вслед за сообщением об аварийном завершении могут посылаться флаги для того, чтобы поддерживать канал в активном состоянии, и передача могла продолжаться.

Сигнал покоя означает, что канал находится в состоянии покоя. Одно из применений состояния покоя находит в полудуплексном сеансе, когда при обнаружении сигнала покоя производится изменение направление передачи на противоположное.

Межкадровое временное заполнение сопровождается передачей между кадрами непрерывной последовательности флагов. Флаги могут быть восьмибитовыми комбинациями, или же может иметь место совмещение последнего 0 предыдущего флага с первым 0 следующего флага. Например, 01111110011111100111111001111110… или 011111101111111011111110…

 

Управляющее поле HDLC

Управляющее поле (рис.1) определяет тип кадра и используется для реализации механизма управления потоком между передающей и принимающей станциями. На рис.2 представлены команды и ответы, используемые в случае сбалансированной и несбалансированной конфигураций канала. Отметим, что в каждом верхнем прямоугольнике содержатся три команды: SNRM, SARM, SABM.

 

Несбалансированный (UN) Несбалансированный (UA) Сбалансированный (UB)
Первичная Вторичная Первичная Вторичная Первичная Вторичная
Команда Ответ Команда Ответ Команда Ответ
I I I I I I
RR RR RR RR RR RR
RNR RNR RNR RNR RNR RNR
SNRM UA SARM UA SABM UA
DISC DM DISC DM DISC DM
FRMR FRMR FRMR

 

Функциональные расширения
Команда Ответ Команда Ответ
1. Для коммутируемых соед. XID XID, RD 8. Отбросить информационные кадры "Ответ"
2. Для дуплексного канала REJ REJ 9. Отбросить информационные кадры "Команда"
3. Для однокадровой передачи SREJ SREJ 10. Расширенная нумерация N(R), N(S)
4. Для информации UI UI 11. Для уст. в 0 своего V(S) и удален. V(R)   RSET
5. Для инициализации SIM RIM 12. Проверка канала TEST TEST
6. Для группового опроса UP 13. Запрос на разъединение RD
7. Расширенное поле адреса кадра 14. 32-битовая CRC
Рис. 3. Команды и ответы HDLC

 

Эти команды являются командами установки режима. HDLC требует, чтобы в одном из трех режимов была установлена сбалансированная или несбалансированная конфигурация. На рисунке показаны также функциональные расширения (опции) основной структуры. Здесь представлен полный набор команд и ответов. Некоторые подмножества протокола HDLC используют только часть этого набора команд / ответов.

Действительный формат управляющего поля (информационный, супервизорный или ненумерованный) определяет то, как это поле кодируется или используется. Самым простым форматом является информационный формат. Содержимое управляющего поля для этого формата показано на рис.1. Управляющее поле информационного кадра содержит два порядковых номера Номер N(S) (Порядковый номер посылки) связан с порядковым номером передаваемого кадра. N(R) (Порядковый номер приема) означает порядковый номер следующего кадра, который ожидается принимающей станцией. N(R) выступает в качестве подтверждения предыдущих кадров. Например, если поле N(R) установлено в 4, станция, получив N(R)=4, знает, что передача кадров 0, 1, 2 и 3 завершилась успешно и что станция, с которой производится обмен данными, ожидает, что следующий кадр будет иметь порядковый номер посылки N(S)=4. Поле N(R) обеспечивает включающее подтверждение (квитирование), то есть N(R)=4 включает подтверждение не только одного предшествующего сообщения. Переменные состояния посылки V(S) и состояния приема V(R), рассмотренные нами ранее, используются для формирования полей N(S) и N(R) протокола HDLC.

Пятый двоичный разряд, бит P/F или бит опроса/окончания принимается во внимание только тогда, когда он установлен в 1. Бит P/F называется битом P, когда он используется первичной станцией, и битом F, когда он используется вторичной станцией. Он используется первичной и вторичной станциями для выполнения следующих функций:

 

Только один бит P (ожидающий ответа в виде F бита) может быть активным в канале в любой момент времени. Если некоторый бит P установлен в 1, он может быть использован в качестве контрольной точки. То есть P=1 как бы говорит: ответьте мне, потому что я хочу знать ваш статус. Контрольные точки играют большую роль в реализации механизма управления трафиком. Это также способ устранения неопределенностей и отмены накопленных транзакции. Бит P/F может использоваться и интерпретироваться следующим образом:

 
 

Описание команд и ответов

Супервизорный формат показан на рис.1 и предусматривает четыре команды и ответа (RR, RNR, REJ, SREJ), которые представлены на рис.4.5. (Обобщенная сводка всех команд и ответов приведена в таблице 1). Назначение этого формата состоит в выполнении нумерованных [т.е. использующих порядковые номера кадров N(R)] супервизорных функций, таких, как подтверждение (квитирование), опрос, временная задержка передачи данных и восстановление после ошибок. Кадры супервизорного формата не содержат информационного поля, следовательно, как показано на рис.1, в них располагается только порядковый номер приема N(R). Супервизорный формат может быть использован для подтверждения приема кадров от передающей станции.

Функции команд и ответов, используемых супервизорным форматом:

Ненумерованные команды и ответы используются для посылки большинства индикаторов команд и ответов. Ненумерованные команды можно разбить на группы в соответствии с выполняемыми функциями:

Функции команд/ответов для ненумерованного формата:

UI (Unnumbered information - Ненумерованная информация). Эта команда позволяет производить передачу данных пользователя в не нумерованном кадре (т. е. без порядкового номера).

RIM (Request Initialization Mode - Режим инициализации запроса). Кадр RIM является запросом на команду SIM от вторичной к первичной станции.

SIM (Set Initialization Mode - Установить режим инициализации). Эта команда используется для инициализации сеанса между первичной и вторичной станциями. Ожидаемым ответом является UА.

SNRM (Set Normal Response Mode - Установить режим нормального ответа). Эта команда переводит вторичную станцию в NRM (режим нормального ответа). NRM предотвращает посылку вторичной станцией несанкционированных (unsolicited) кадров. Это означает, что первичная станция управляет всем потоком сообщений в канале.

DM (Disconnect Mode - Режим разъединения). Этот кадр ответа передается вторичной станцией для индикации того, что она находится в режиме логического разъединения.

DISC (Disconnect - Разъединить). Эта команда, передаваемая первичной станцией, переводит вторичную станцию в режим разъединения аналогично нажатию рычага телефонного аппарата.

UA (Unnumbered Acknowledgment - Ненумерованное подтверждение). Это - положительное подтверждение АСК для установки режима команд (SIM, DISC, RESET). UA также используется для уведомления об окончании состояния занятости станции.

FRMR (Frame Rejekt - Неприем кадра). Вторичная станция посылает этот кадр, когда она встречается с недействительным кадром. Причина указывается в информационном поле этого кадра. Кадр ответа FRMR используется при выполнении следующих условий:


В информационном поле кадра FRMR содержится информация о состоянии (status)отвергнутого кадра:

 

RD (Request Disconnect - Запрос разъединения). Это запрос от вторичной станции на логическое разъединение и установление состояния логического разъединения.

XID (Exchage State Identification - Идентификация станции при коммутации). Эта команда запрашивает идентификацию вторичной станции. В системах с коммутацией эта команда используется для идентификации вызывающей станции.

TEST (Test-проверка). Этот кадр (команда/ответ) используется для санкционирования тестовых ответов от вторичной станции. В ответе желательно сформировать информационную область, содержащуюся в команде.

SARM (Set Asynchronous Response Mode -Установить режим асинхронных ответов). Устанавливает режим, позволяющий вторичной станции вести передачу без опроса со стороны первичной станции. Он переводит вторичную станцию в состояние передачи информации (IS) режима ARM. Поскольку команда SARM устанавливает две несбалансированные станции, SARM должна выдаваться по обоим направлениям передачи:

 

Команды DISC посылаются, чтобы гарантировать полную реинициализацию канала.

SABM (Set Asynchronous Balanced Mode - Установить асинхронный сбалансированный режим). Устанавливает режим в ARM, в котором станции являются равноправными. Для передачи не требуется опроса, поскольку каждая станция является станцией комбинированного типа.

SNRME (Set Normal Response Extended - Установить расширенный режим нормального ответа). Устанавливает SNRM с двумя дополнительными байтами в управляющем поле.

SABME (Set Asynchronous Balance Mode Extended - Установить расширенный асинхронный сбалансированный режим). Устанавливает SABM с двумя дополнительными байтами в управляющем поле.

UP (Unnumbered Poll - Ненумерованный опрос). Команда опрашивает станцию безотносительно к нумерации кадров и квитированию. Если бит опроса установлен в 0, ответ является необязательной возможностью, предоставляемой только для одного ответа. В качестве ответа могут быть переданы неподтвержденные или еще непереданные I-кадры.

RSET (Reset - Сброс переменных). Передающая станция сбрасывает свой V(S), а принимающая станция свой V(R) с целью возобновления упорядоченной передачи в заданном направлении новой последовательности кадров. Эта команда используется для восстановления. Кадры, которые ранее не были квитированы, остаются таковыми.

Таблица 1
  Код управляющего поля    
  1 2 3 4 5 6 7 8 Команды Ответы
 
I-формат 0 N(S) * N(R) I - Информация I - Информация
 
S-формат 1 0 0 0 * N(R) RR - Готов к приему RR - Готов к приему
1 0 0 1 * N(R) REJ - Неприем REJ - Неприем
1 0 1 0 * N(R) RNR - Не гот приему RNR - Не готприему
1 0 1 1 * N(R) SREJ - Выбор. неприем SREJ - Выбор.неприем
                     
U-формат 1 1 0 0 * 0 0 0 UI - Ненумеров.информ. UI - Ненумеров.информ.
1 1 0 0 * 0 0 1 SNRM - Установить NRM  
1 1 0 0 * 0 1 0 DISC - Разъединить RD- Запросразъед.
1 1 0 0 * 1 0 0 UP- Ненумеров. опрос  
1 1 0 0 * 1 1 0   UA -Ненумеров.подтв.
1 1 0 0 * 1 1 1 TEST - Проверка TEST - Проверка
1 1 1 0 * 0 0 0 SIM - Устеж.иниц. RIM -Запреж.иниц.
1 1 1 0 * 0 0 1   FRMR - Неприем кадра
1 1 1 1 * 0 0 0 SARM - Установить ARM DM - Режимразъед.
1 1 1 1 * 0 0 1 RSET - Сбросить  
1 1 1 1 * 0 1 0 SARME -Устасш.ARM  
1 1 1 1 * 0 1 1 SNRME -Устасш.NRM  
1 1 1 1 * 1 0 0 SABM -установить ABM<TD   
1 1 1 1 * 1 0 1 XID - Идентиф. станции XID - Идентиф. станции
1 1 1 1 * 1 1 0 SABME -Устасш. ABM  
 
 

Системные параметры Т1, N2, N1, K и рекомендации по их установке

Таймер Т1 запускается с момента передачи каждого кадра и используется для инициирования повторной передачи, в случае его переполнения. При выборе периода таймера Т1 необходимо учитывать, запускается ли таймер по началу или по концу кадра. Для правильной работы процедуры необходимо, чтобы период таймера Т1 был больше, чем максимальное время между передачей некоторого кадра (SARM, SABM, DM, DISC, FRMR, I или супервизорной команды) и приемом соответствующего кадра, возвращаемого в качестве отклика на этот кадр (UA, DM или подтверждающий кадр).

Счетчик N2 используется для определения максимального числа повторных передач, выполняемых по переполнении таймера Т1. Переменные Т1 и N2 используются также командами / ответами установления звена, такими, как SABM и UA.

Счетчик N1 - максимальное число битов в I-кадре. Определяет максимальную длину информационных полей.

Размер окна К (примечание: в лабораторных работах обозначаем окно W) - максимальное число не подтвержденных I-кадров кадров, т.е. которые можно передать не ожидая подтверждения. Это максимальное число последовательно пронумерованных I-кадров, которые в любой момент времени станции могут передать без получения подтверждения. Оно не должно быть более 7  при нумерации 23.

Параметры Т1, N2, N1 и K являются системными в стеке протокола X25/2, подлежащими согласованию с администрацией на некоторый период времени.

 

Задания для лабораторной работы "Протокол HDLC"

Варианты лабораторных работ и примеры процессов передачи в протоколе HDLC приведены на рис.4,5,6,7,8. На этих рисунках показаны различные виды коммуникации:

Размер окна (W=**) - задает преподаватель.

Требуется:

(1) разобрать и понять механизмы управления потоком во всех заданиях.

(2) В отчете привести: заданный вариант задания (cрисунком и описанием) и выполнение задания путем формирования нового рисунка, иллюстрирующего работу с заданным размером окна (W)

 

Условные обозначения, используемые на рисунках. Рисунки представляют собой как бы "логические снимки", сделанные в отдельные интервалы времени (t, t+1 и т.д.). Обозначения, находящиеся во временном "окне", отражают содержание кадра HDLC (или некоторого подмножества протокола, например, LAPB), передаваемого станциями А и В в конкретное время. 


Весьма маловероятно, что две станции начнут передачу строго в один и тот же момент времени, но для упрощения объяснения мы будем придерживаться этого предположения. Например, временное окно станции А могло бы быть изображено более широким, чем окно станции В, что означало бы, что станцией А передается более длинный кадр, но неравные окна не оправдано усложнили бы и без того сложную тему. Если согласится с этой небольшой аномалией, принципы, которые поясняются на рисунках, остаются в силе. Кроме того, иллюстрации полнодуплексного метода показывают некоторые временные окна, относящиеся к каналу, который находится в состоянии покоя. Это может иметь место или нет в зависимости от того, как загружены станции.

Смысл обозначений такой: 
А - Адрес станции в заголовке кадра. 
I - Информационный кадр. 
S=x - Порядковый номер передаваемого кадра х
R=x - Порядковый номер ожидаемого кадра х и подтверждение предыдущих х-1х-2 и т.д. 
RR,SNRM,SABM,REJ,SREJ - Команды и ответы. 
P/F - Бит опроса/окончания установлен в 1.

Напомним, что порядковый номер ожидаемого кадра N(R) означает включающее подтверждение всего переданного и принятого трафика. Номер в этом поле в действительности представляет собой величину, на 1 большую номера последнего подтвержденного кадра. Например, R=4 означает, что подтверждены кадры 0,1,2 и 3 и что приемник ожидает, что следующий кадр будет иметь 4 в поле порядкового номера посылки передающей станции. По ходу описания процесса будем обсуждать бит P/F там, где это необходимо.

Все рисунки сопровождаются кратким описанием событий в каждый момент времени. Можно заметить, что в иллюстрациях в качестве адреса станции используется либо А, либо В. Как отмечалось ранее, правилами протокола HDLC определено, какой адрес (передающей или принимающей станции) помещается в поле адреса: команды используют адрес принимающего одноуровневого логического объекта уровня звена данных. Таким образом в случае станции с адресом А, если принятый кадр содержит А, это команда; если принятый кадр содержит В, это ответ.

За исключением рис.10, соглашения относительно адресации, принятые в иллюстрациях, соответствуют подмножеству HDLC-LAPB (сбалансированной процедуре доступа к звену). Этот широко используемый протокол требует, чтобы все информационные (I) кадры были командными кадрами. Вследствие этого он содержит адрес приемника. Хотя все эти примеры недопустимы в LAPB, для наглядности иллюстраций используется некоторая непротиворечивая схема адресации. Более подробно LAPB рассматривается позднее.

Описание событий для процесса, представленного на рис.4:

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8
Ст. А B,
SABM
P
B,I
S=0
R=0
B,I,P
S=1
R=0
A,RR
F
R=2
Ст. В B,UA
F
B,RR
F
R=2
A,I
S=0
R=2
A,I,P
S=1
R=2
B,RR
F
R=2

Рис.4 Асинхронный сбалансированный режим с полудуплексным потоком данных (с использованием P/F для реализации "контрольной точки").

Ниже приведены моменты времени и события для процесса, представленного на рис.5:

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8
Станция А передает B,I
S=0
R=0
B,I,P
S=1
R=1
B,I 
S=2
R=3
B,RR,
P
R=4
B,I
S=3
R=5
B,RR
P
R=5
Станция В передает A,I
S=0
R=0
A,I
S=1
R=1
B,RR
F
R=2
A,I
S=2
R=2
A,I
S=3
R=2
A,I
S=4
R=3
B,RR
F
R=3
A,I
S=5
R=3
A,RR
P
R=4
Рис.5. Асинхронный сбалансированный режим с полнодуплексным потоком данных (Р не останавливает потока данных). Предполагается, что в предыдущих кадрах был установлен асинхронный сбалансированный режим

 

Рис.6,7,8 являются примерами того, как в протоколе HDLC обрабатываются ошибки передачи. На рис.6 показано использование поля порядкового номера приема N(R) для отрицательного (NAK) подтверждения кадра. На рис.7 показано использование Неприема (REJ), а рис.8 иллюстрирует использование Выборочного неприема (SREJ). Здесь рассматривается момент t продолжающегося сеанса, когда станция А передает кадр с номером 6.

Ниже приведены моменты времени и события для процесса, показанного на рис.6 (не поддерживаемого протоколом LAPB)

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8
Станция Апередает B,I
S=6
R=4
B,I
S=7
R=4
(ошибка)
B,I
S=0
R=4
B,I,P
S=1
R=4
B,I
S=7
R=4
B,I
S=0
R=4
B,I,P
S=1
R=4
Станция В передает B,RR,F R=7 RR,F R=2
Рис.6 Восстановление по методу Возвращение-на-N (контрольная точка). Рисунок иллюстрирует продолжающийся сеанс; Р и F используются для реализации восстановления

Исключительное использование поля порядкового номера приема N(R) для отрицательного подтверждения кадра не рекомендуется для полнодуплексной передачи. Так как кадры передаются по каналу в обоих направлениях, порядковые номера посылки и приема часто перекрываются. Например, предположим, что кадр 4 станции А [N(S)=4] передается примерно в то же время, что и кадр станции В, который содержит N(R)=4. Станция А может ошибочно заключить, что ее кадр 4 получен Станцией В с ошибкой, в то время как станция В просто указывает, что следующим она ожидает кадр 4. Более эффективный подход к исправлению ошибок состоит в явном указании ошибочного кадра. Рис.7 и 8 иллюстрируют два метода реализации явных отрицательных подтверждений NAK.

Ниже приведены моменты времени и события для процесса, который поясняется рис.7:

t t+1 t+2 t+3 t+4 t+5 t+6
Станция Апередает B,I
S=6
R=4
B,I
S=7
R=4(ошибка)
B,I
S=0
R=4
B,I
S=7
R=4
B,I
S=0
R=4
B,I
S=1
R=4
Станция Впередает B,REJ
F
R=7
B,RR
F
R=2
Рис.7 Исправление ошибок с использованием метода Возвращение-на-N(REJ). Рисунок иллюстрирует продолжающийся сеанс

События для процесса, который представлен на рис.8 (не поддерживаемого протоколом LAPB):

t t+1 t+2 t+3 t+4 t+5
СтанцияАпередает B,I
S=6
R=4
B,I
S=7
R=4(ошибка)
B,I
S=0
R=4
B,I
S=7
R=4
B,I
S=1
R=4
Станция Впередает B,SREJ
F
R=7
B,RR
F
R=2
Рис.8. Исправление ошибок по методу Выборочный неприем (SREJ). Рисунок иллюстрирует продолжающийся сеанс

 

Подмножества HDLC

Принятие базового множества (superset) протокола HDLC заложило прочную основу для реализации подмножества протокола HDLC. Некоторые подмножества используются в настоящее время в промышленности. Эти подмножества показаны на дереве классификаций сетей на рис.3. Структура базового подмножества HDLC дает возможность бит-ориентированным протоколам распознавать и использовать в разнообразных приложениях одни и те же процедуры. Приложения требуют для выполнения своих функций различных режимов работы и различных подмножеств команд и ответов. Например, требования, выдвигаемые многоточечными интерактивными приложениями, отличаются от требований двухточечных неинтерактивных систем.

Будем считать, что станция соответствует некоторому классу HDLC, если это оборудование реализует все команды и ответы, определенные для этого класса. Как указывалось ранее, тремя основными классами HDLC являются:

 

HDLC предусматривает множество факультативных расширений основных классов. Эти расширения используются фирмами-поставщиками и пользователями HDLC для обеспечения большего разнообразия в структуре базового подмножества. Напомним, что опции и базовое множество HDLC показано на рис.3. Классы подмножеств обозначены сокращениями, такими, как UN, UA или BA плюс факультативное расширение протокола HDLC, обозначаемые конкретным номером опции. Например, протокол, обозначенный BA-4, является сбалансированным асинхронным протоколом, предназначенный для передачи ненумерованной информации (UI). Имея в виду эту классификационную схему, рассмотрим некоторые из основных подмножеств стандарта HDLC.

LAP (Процедура доступа к звену) является одним из наиболее ранних подмножеств HDLC. LAP основывается на команде SARM - Установить режим асинхронного ответа - для сбалансированной конфигурации. Реализация звена с LAB является несколько неуклюжей, так как требуется, чтобы прежде чем установлено звено, обе станции посылали SARM и UA. Она отличается от реализации широко используемой процедуры LAPB.

LAPB (Сбалансированная процедура доступа к звену) используется во всем мире несколькими частными вычислительными сетями и сетями общего пользования. LAPB -это некоторое подмножество репертуара команда/ответов HDLC. LAPB используется для поддержки широко распространенного протокола сети с пакетной передачей Х.25. LAPB классифицируется как подмножество ВА-2.5 HDLC. Это означает, что кроме использования асинхронного сбалансированного режима этот протокол использует также два функциональных решения: опции 2 и 8. Опция 2 делает возможным одновременный неприем кадров в режиме двунаправленной передачи (рис.7). Опция 8 не допускает передачу полезной информации в кадрах ответа. Это не представляет какой-либо проблемы, так как в асинхронном сбалансированном режиме информация может представляться в командных кадрах, и поскольку обе физические станции являются логическими первичными станциями, обе могут представлять команды.

LLC (Управление логическим звеном) является стандартом, опубликованным Комитетом по стандартам IEEE 802 для локальных сетей. Стандарт допускает взаимодействие локальной сети с глобальной сетью. LLC использует подкласс базового множества HDLC; имеет классификационное обозначение ВА-2,4. Он использует сбалансированный асинхронный режим (BA) и функциональные расширения (опции 2 и 4).

Сетевой уровень
Канальный уровень Подуровень управления логическим звеном(LLC)
Подуровень блока доступа к среде (MAU)
Физический уровень
Рис.9. Управление логическим звеном (LLC)

 

LLC разработан так, чтобы его можно было поместить между уровнем локальной сети и уровнем глобальной сети. Подобная реализация показана на рис.9. Блок доступа к среде (MAU) содержит протоколы локальной сети, а LLC обеспечивает интерфейс для верхних уровней. Оба подуровня описаны более подробно в разделе локальных сетей. Все локальные сети, специфицированные IEEE 802, обеспечивают сервис без установления логического соединения (тип 1). Сервис, ориентированный на установление логического соединения (тип 2), может предоставляться факультативно.

В локальных сетях типа 1 также отсутствуют механизм управления потоком и восстановление данных после ошибок. Это обусловлено необходимостью снижения накладных расходов для высокоскоростных каналов (отсутствуют фазы установления и расторжения соединений, отсутствуют подтверждения приема). Целостность данных поддерживается в ЛВС верхними уровнями модели ВОС. Например, в TCP/IP сетях транспортным уровнем.

В локальных же сетях типа 2 эти функции (установление и расторжение соединений, механизм управления потоком посредством скользящего окна) предусмотрены.

Множества допустимых команд для LLC приведены на рис.10

Команды Ответы
Тип 1 UI - ненумерованная информация XID - идентификация станции
XID - идентификация станции XID - идентификация станции
TEST- проверка TEST- проверка
Тип 2 (I-формат)
(S-формат)(U-формат)
I - Информационный кадр I - Информационный кадр
RR - Готов к приему RR - Готов к приему
RNR - Не готов к приему RNR - Не готов к приему
REJ - Неприем REJ - Неприем
SABM -Установить ABM UA - Ненумер.подтв., FRMR - Неприем
DISC - разъединить UA-Ненумер.подт., DM- Разъединение
Рис.10. Команды и ответы подуровня LLC локальной сети

 

LAPD (Процедура доступа к D - каналу) является еще одним подмножеством структуры HDLC, хотя ее расширение выходят за рамки HDLC. LABD предназначен для управления звеном данных в цифровых сетях с интеграцией служб ISDN, которая получает все большее развитие.

LAPX (Расширенный LAPB) это еще одно подмножества HDLC. Этот протокол (процедура) используется в терминальных системах и в развивающимся стандарте TELETEX. Это полудуплексный вариант HDLC.

SDLC (Синхронное управление звеном данных) является версией базового множества HDLC, разработанного компанией IBM. SDLC использует несбалансированный режим нормального ответа и может быть классифицирован как UN-1,2,4,5,6,12. Обеспечивает поддержку двухточечных, многоточечных или кольцевых соединений. События для процесса, поддерживаемого протоколом SDLC, представлены на рис.11.

 

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13
А B,RR
P
B
SIM
P
B
SNRM
P
C,RR
P
R=0
B,I
S=0
R=0
B,I
S=1
R=0
B,RR
P
R=0
C,RR
P
R=3
B,RR
P
R=2
В B
RIM
F
B
UA
F
B
UA
F
B,I
S=0
R=2
B,I,F
S=1
R=2
С C,I
S=0
R=0
C,I
S=1
R=0
C,I,F
S=2
R=0
Рис.11. SDLC в полнодуплексной многоточечной системе передачи данных, где А - первичная станция, В - в режиме разъединения, С - в режиме нормального ответа

 

Выводы

Семейство HDLC протоколов канального уровня продолжает развиваться и расширяться. Однако акцент на обеспечение безошибочной передачи ослабляется по мере использования высокоскоростных каналов связи и использования методов коррекции ошибок. В полной мере возможности HDLC протокола используется при построении глобальных сетей передачи данных.

 

Литература

1. Блэк Ю. Сети ЭВМ: протоколы, стандарты, интерфейсы. М., Мир, 1990.

2. Методические материалы и документация по пакетам прикладных программ. Выпуск 24. Рекомендация МККТТ Х.25 и ее применение в информационно-вычислительных сетях. Часть I. Опыт применения рекомендации Х.25. М., МЦНТИ, 1983.

3. Методические материалы и документация по пакетам прикладных программ. Выпуск 24. Рекомендация МККТТ Х.25 и ее применение в информационно-вычислительных сетях. Часть II. Описание рекомендации Х.25. М., МЦНТИ, 1983.

4. Протоколы информационно-вычислительных сетей: Справочник/ С.А.АничкинС.А.БеловА.В.Берштейн и др.; Под. ред. И.А МизинаА.П.Кулешова. - М.: Радио и связь, 1990. - 504с.л.