Laser peening of Ti-6Al-4V and the associated effects on its high temperature fatigue

DR. SATHYA SWAROOP Professor Surface Modification Laboratory Department of Physics Vellore Institute of Technology Vellore-632 014, India

Material

- AR (as-received, mill annealed, ASTM B348), σ_y & UTS: 840 and 950 MPa
- Solution treated (ST), 920 °C for 1 h [Max. σ_y & UTS: 950 and 1050 MPa]
 - primary α with lamellar α + β (that is, transformed β))
 - Average grain size: 10 μm

Ti-6-4 bar ((a) AR and (b) ST)

LPwC

- Wavelength 1064 nm with FWHM of pulses at 10 ns and repetition rate at 10 Hz.
- Diameter of the spot: 0.8 mm; overlap: 70%.
- Variable power density (1-10 GW cm⁻²) and/or multiple peening
- Running water overlay (thickness of around 1 mm).

Residual Stress

- 2θ= 142°, (2 1 3) plane
- Measurements along 0, 45 and 90° were isotropic
- Measurements at 3 locations (at each depth) were uniform

- Issue # 1: Max. compressive stress is low
 - Solution: Switch to AR samples solves this
 - Conclusion: Residual stress is a function of volume fraction of α and β phases
- Issue # 2: Surface tensile stress

Probable causes of TRS

1. Surface melting and re-solidification?

(a) unpeened and (b) LP-6-2 sample

2. Surface damage

Oxygen concentration at surface

EDX: 3.6 wt% (unpeened) & 36 wt% (LP-6-2) $\Rightarrow \alpha$ case?

Typical α case [M.J. Donachie, Titanium: A technical guide, 2nd ed, 2000, ASM International]

(a) unpeened, (b) LP-6-1, (c) LP-6-2 and (d) LP-6-5

Oxide formation

Acid pickling

7

SIMS profiles

Oxygen rich layer < 10 μm Consistent with EDX

No hydrogen embrittlement

Residual stress profile

- Surface TRS: + 65 MPa
- RS: uniform & isotropic
- Region < max. CRS ⇒ thermally affected
- Pickling does not affect the profile

Hardness

- Hardness maxima away from surface
- No embrittlement
- Large work hardened depth (500 µm)

EBSD

Misorientation Angle		Unpeened		LP-6-2		LP-6-5	
2-5°		0.309		0.283			0.321
5-15°		0.125		0.116			0.129
15-18°		0.566		0.601			0.549
Condition	A gra	verage ain size (µm)	Ultra-fine grains (< 1 μm)		Fine grains (1-5 μm)		Coarse grains (5-18 μm)
Unpeened	4	4.675	0.016		0.424		0.560
LP-6-2		4.407	0.020		0.434		0.546
LP-6-5	4	4.968	0.018		0.447		0.535

S-N Curve

Crack initiation site shifted from surface to sub-surface (at the end of compressive stress zone) after peening

Summary

- Residual stress distribution in Ti-6Al-4V after LPwC depends on volume fractions of α and β phases
- Maximum CRS of 0.66 σ_v can be induced by LPwC
- Oxygen rich TRS region (< 20 μm) can be eliminated by pickling without embrittlement
- LPwC marginally improves misorientation angle and grain refinement
- Fatigue life improved by 2.5 to 3 times at σ_{max} = 400 MPa and 300 °C, by shifting of crack initiation sites to the sub-surface