ADDENDUM to GRANULAR COMPOSITES

PBX systems in the Brazilian Test

W.G. Proud

Thanks to: Dr DM.Williamson, SCCM 2009

Tensile failure through compression, in a predictable location.

Brazilian test

Tensile failure through compression, in a predictable location.

$$\sigma_F = \frac{2P}{\pi DT} \left(1 - \left(\frac{b}{R}\right)^2 \right)$$

Brazilian test

What should full-field strain maps look like?

$$\sigma_r = -\frac{2p}{\pi} \left\{ a + \sum_{n=1}^{n=\infty} \left[1 - \left(1 - \frac{1}{n}\right) \left(\frac{r}{R}\right)^2 \right] \left(\frac{r}{R}\right)^{2n-2} \sin 2na\cos 2n\theta \right\},\,$$

$$\sigma_{\theta} = -\frac{2p}{\pi} \left\{ a - \sum_{n=1}^{n=\infty} \left[1 - \left(1 + \frac{1}{n} \right) \left(\frac{r}{R} \right)^2 \right] \left(\frac{r}{R} \right)^{2n-2} \sin 2na \cos 2n\theta \right\},$$

$$\tau_{r\theta} = \frac{2p}{\pi} \Biggl\{ \sum_{n=1}^{n=\infty} \Biggl[1 - \left(\frac{r}{R}\right)^2 \Biggr] \Biggl(\frac{r}{R}\right)^{2n-2} \sin 2na \sin 2n\theta \Biggr\},$$

where p, a, r, R, and θ are load, contact width (2*b* in some notation), radial position, disk Radius and angular position respectively. These expressions can be transformed into Cartesian variables σ_x , σ_y and σ_{xy} , with the use of Mohr's circle:

$$\sigma_x = \frac{\sigma_r + \sigma_\theta}{2} + \frac{\sigma_r - \sigma_\theta}{2} \cos 2\theta - \sigma_{r\theta} \sin 2\theta,$$

$$\sigma_x = \frac{\sigma_r + \sigma_\theta}{2} - \frac{\sigma_r - \sigma_\theta}{2} \cos 2\theta + \sigma_{r\theta} \sin 2\theta,$$

$$\sigma_{xy} = \frac{\sigma_r - \sigma_\theta}{2} \sin 2\theta + \sigma_{r\theta} \cos 2\theta.$$

Assuming plane stress ($\sigma_z = 0$), and a value of Poisson's ratio v and elastic modulus E, strain values can then be calculated:

$$\varepsilon_{xx} = \frac{1}{E} (\sigma_x - v\sigma_y),$$

$$\varepsilon_{yy} = \frac{1}{E} (\sigma_y - v\sigma_x).$$

Hondros G. 1959 The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. *J. Aust. appl. Sci.* **10** 243-267.

Full field strain distributions

compressive

Full field strain distributions

tension

Full field strain distributions

shear

Experiment

Rig has:

- Full stainless steel construction.
- PTFE based linear bearings.
- Magnetic couplings.

Shroud has:

- Liquid nitrogen cooling.
- Shroud has double glazed viewing & illumination ports.

Camera is:

- Phantom v4.3 high speed digital
- Synchronised sampling rate of Instron

Results: room temperature

Progressive failure at 107 N

Results: -94 °C

Catastrophic failure at 589 N

DICC analysis

Room temperature tensile

Room temperature shear

Room temperature DICC

Sample	Temp / °C	Failure	
		σ / MPa	<i>\varepsilon / 10-3</i>
#1	$+28 \pm 1$	1.48 ± 0.06	6.5 ± 0.2
#2	$+28 \pm 1$	1.49 ± 0.06	7.7 ± 0.2
#3	$+28 \pm 1$	1.59 ± 0.06	7.8 ± 0.2
#4*	$+28 \pm 1$	1.75 ± 0.06	6.7 ± 0.2
mean	$+28 \pm 1$	1.59 ± 0.07	7.2 ± 0.3
#5*	-94 ± 3	6.68 ± 0.06	3.8 ± 0.2
#6	-94 ± 3	8.19 ± 0.06	2.3 ± 0.2
#7	-94 ± 3	6.30 ± 0.06	2.6 ± 0.2
#8	-94 ± 3	7.08 ± 0.06	3.4 ± 0.2
mean	-94 ± 3	7.1 ± 0.4	3.0 ± 0.3

* denotes polished sample

Increase in failure stress and reduction in failure strain.

Room temperature microscopy

-94 °C microscopy

Conclusions

- Upon testing below $T_{G:}$
 - Strength is increased and strain to failure is reduced.
 - Fracture mode changes intergranular \rightarrow transgranular.
 - Fracture faces nominally HMX-on-binder \rightarrow HMX-HMX.
- By invoking concept of time-temperature superposition we expect same behaviour at room temperatures and high strain rates.
- Bulk response and local response:
 - Before failure
 - Localisation of failure
 - Compare 'ideal homogeneous response' to real composite response
 - Damage model needs development