На правах рукописи

Шестаков Александр Владимирович

КАСКАДНЫЕ МОДЕЛИ СПИРАЛЬНОЙ ТУРБУЛЕНТНОСТИ

01.02.05 — Механика жидкости, газа и плазмы

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

 Π ермь — 2014

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте механики сплошных сред Уральского отделения Российской академии наук.

Научный руководитель:	Фрик Петр Готлобович, доктор физико-математических наук, профессор, зав.лаб.
Официальные оппоненты:	Решетняк Максим Юрьевич, доктор физико-математических наук, ведущий научный сотрудник Института фи- зики Земли
	Соколов Дмитрий Дмитриевич, доктор физико-математических наук, профессор кафедры математики физическо- го факультета Московского государственого университета
Ведущая организация:	ФГБОУ ВПО "Пермский государственный национальный исследовательский универ- ситет"

Защита состоится "____" 2014г. в ____ ч. ___ мин. на заседании диссертационного совета Д 004.012.01 при Федеральном государственном бюджетном учреждении науки Институте механики сплошных сред Уральского отделения Российской академии наук по адресу: 614013, г. Пермь, ул. Академика Королёва 1; тел: (342) 2378461, факс: (342) 2378487; сайт: http://www.icmm.ru

С диссертацией можно ознакомиться в библиотеке ИМСС УрО РАН. Электронная версия текста диссертации и автореферата доступны на сайте ИМСС УрО РАН по адресу http://www.icmm.ru

Автореферат разослан "____"____ 2014.

Учёный секретарь Диссертационного совета доктор технических наук

Березин И. К.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Объект исследования и актуальность темы. Актуальность исследования турбулентных течений обоснована их широким распространением в природе и технических устройствах. В исследованиях развитой турбулентности можно выделить два основных направления: первое берет начало в работах О.Рейнольдса и ставит своей целью расчет средних характеристик (полей скорости, завихренности, температуры, концентрации примеси) конкретных течений, второе сформировалось в значительной мере под влиянием работ А.Н.Колмогорова и направлено на выяснение общих свойств мелкомасштабной статистически однородной турбулентности. В обоих направлениях достигнут прогресс, в значительной степени обусловленный бурным развитием компьютеров и выходом на прямые численные расчеты течений, характеризуемых числом Рейнольдса до Re $\approx 10^5$. Однако, выход в прямых численных расчетах на существенно большие значения числа Рейнольдса $(скажем, 10^6 - 10^7)$ в ближайшее десятилетие ожидать нельзя, что делает крайне привлекательными маломодовые модели развитой турбулентности, к которым относятся и каскадные модели турбулентности, независимо предложенные в начале 1970-х А.М.Обуховым и Е.Лоренцом. Каскадные модели (в английской литературе устоялся термин "shell models") используют так называемые коллективные переменные, характеризующие пульсации величин в заданном диапазоне (оболочке) волновых чисел и позволяют описать процессы спектрального переноса энергии, завихренности, концентрации примеси и других величин в широком диапазоне масштабов. В начале 1990-х было обнаружено, что каскадные модели с удивительной точностью воспроизводят свойства высших статистических моментов пульсаций скорости в реальных турбулентных потоках. Это вызвало рост интереса к каскадным моделям, который не снижается до настоящего времени, о чем свидетельствуют многочисленные публикации в научной периодической литературе. С помощью каскадных моделей были выяснены многие свойства двумерной (квазидвумерной) и трехмерной турбулентности, турбулентной конвекции, МГД-турбулентности. При этом каскадным моделям доступны расчеты для чисел Рейнольдса $\text{Re} = 10^7 - 10^8$ и выше.

В исследованиях свойств развитой турбулентности отдельное место занимают работы, связанные с изучением турбулентных течений с нарушенной отражательной симметрией. Такие течения называются спиральными, а мера, характеризующая степень нарушения симметрии, называется спиральностью и является наряду с энергией интегралом движения в идеальной трехмерной гидродинамике. Изучение спиральных течений важно для решения таких фундаментальных проблем, как проблема генерации космических магнитных полей, проблема зарождения и эволюции крупномасштабных структур в атмосфере и т.д.. На сегодняшний день остается много вопросов, касающихся поведения спиральности и ее влияния на эволюцию турбулентных потоков.

Представляется, что в изучении спиральной турбулентности не достаточно внимания уделено возможностям каскадных моделей. Проблема состоит в том, что в рамках каскадных моделей само определение меры спиральности сталкивается с серьезными трудностями, связанными с особенностями данного инварианта. Поэтому, актуальной задачей является как построение каскадных моделей, пригодных для описания спиральной турбулентности, так и изучение с их помощью особенностей каскадных процессов в спиральных турбулентных потоках.

<u>Целью работы</u> является построение каскадной модели развитой трехмерной турбулентности, адекватно описывающей спектральный перенос обоих интегралов движения (энергии и спиральности), и изучение с её помощью особенностей развитой турбулентности при нарушении отражательной симметрии, причиной которого могут выступать, например, вращение или внешние силы специального вида.

Научная новизна работы.

- 1. Рассмотрены способы описания спиральности в каскадных моделях различного типа. Показано, что каскадные модели, в которых спиральность однозначно связана с энергий пульсаций данного масштаба, не дают устойчивого спектрального потока при высоком уровне спиральности. Построена новая каскадная модель турбулентности, в которой спиральность определяется как мера корреляции действительной и мнимой части каскадной переменной, и показано, что эта модель работает при любом уровне спиральности.
- С помощью построенной модели исследованы инерционные интервалы переноса энергии и спиральности большой протяженности, недоступные ни в реальных экспериментах, ни в прямом численном моделировании.

- 3. Исследовано влияние вращения на каскадные процессы. Показано, что вращение приводит к подавлению каскадного процесса переноса энергии на больших масштабах, не оказывая существенного влияния на динамику переноса спиральности.
- 4. Исследованы особенности каскадных процессов в турбулентности с независимым подводом энергии и спиральности. Показано, что распределенный (в пространстве масштабов) впрыск спиральности существенно меняет характер процесса каскадного переноса энергии, влияя на спектральное распределение как спиральности, так и энергии.

<u>Научная и практическая ценность</u> работы определяется разработанной новой каскадной моделью спиральной турбулентности и результатами исследования с помощью этой модели свойств спиральной турбулентности в широком диапазоне чисел Рейнольдса.

Работа выполнена в рамках госбюджетных тем "Взаимодействие мелкомасштабной турбулентности и крупномасштабных полей в течениях проводящей и непроводящей жидкости" (№ гос.рег. 01.2.007 00735), "Крупномасштабные поля и структуры в потоках проводящей и непроводящей жидкости" (№ гос.рег. 01200961901), проектов РФФИ-Урал 07-01-96007 "МГДтурбулентность и ее вклад в динамо средних полей", РФФИ-Урал 11-01-96000 "Кризисные явления в крупномасштабной циркуляции при турбулентной конвекции в природных и технологических системах", РФФИ-Урал 11-01-96031 "Каскадно-сеточное численное моделирование многомасштабных турбулентных систем"

<u>Обоснованность и достоверность</u> результатов, полученных в работе, основывается на всестороннем тестировании предлагаемых каскадных моделей и расчетных программ, сопоставлении полученных результатов, там, где это возможно, с результатами других авторов, полученными в экспериментальных работах и прямых численных расчетах для умеренных чисел Рейнольдса.

<u>Апробация работы</u>. Основные результаты, полученные в работе, докладывались и обсуждались: на всероссийской конференции молодых ученых "Математическое моделирование в естественных науках", Пермь, в 2005 году; на заседаниях 15-й, 16-й, 17-й Зимних школ по механике сплошных сред, Пермь, 2007, 2009, 2011 г; на конференции молодых ученых "Неравновесные переходы в сплошных средах", Пермь, 2006; на 14-й европейской конференции по турбулентности ETC2014, Лион, Франция, 2014; на семинарах института механики сплошных сред УрО РАН, Пермь.

<u>Публикации.</u> По теме диссертации опубликовано 10 работ, из них 2 статьи в журналах из перечня ВАК.

<u>Личный вклад автора.</u> Автором диссертации выполнены построение модели, выбор расчетных методов, разработка и программная реализация расчетных алгоритмов, расчеты и анализ полученных данных.

<u>Структура и объем диссертации</u>. Диссертация состоит из введения, четырех Глав, основных выводов и списка литературы (110 наименований). В диссертации приводится 59 рисунков. Общий объем информации составляет 122 страницы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность исследуемой проблемы, сформулирована цель и задача диссертационной работы, перечислены полученные в диссертации новые результаты, их практическая ценность, а также описана структура диссертации.

<u>Первая глава</u> носит обзорный характер. Представлен обзор публикаций, близких к теме диссертации. На основании обзора даны характеристики современного состояния проблемы изучения спиральной турбулентности, возможностей использования для этой цели каскадных моделей, обоснована актуальность выбранной задачи и метода исследования.

<u>Во-второй</u> главе обсуждаются особенности спиральной турбулентности и способы ее моделирования в рамках каскадных моделей.

Интерес к спиральной турбулентности впервые возник в контексте проблемы МГД-динамо, в которой спиральность позволила построить первые замкнутые модели динамо средних полей еще в 60-х годах. Тем не менее, до сегодняшнего дня общепринятой точки зрения на влияние спиральности на свойства развитой турбулентности нет. В трехмерной гидродинамической турбулентности спектральная плотность спиральности ограничена сверху соотношением $H(k) \leq kE(k)$, что оставляет возможность как минимум двух сценариев поведения спиральности. При первом сценарии реализуется каскад энергии и спиральности в сторону малых масштабов. При реализации этого сценария спектральные распределения энергии и спиральности подчиняются степенным законам $E(k) \sim C_{\varepsilon} \varepsilon^{2/3} k^{-5/3}$ и $H(k) \sim C_{\eta} \varepsilon_{\eta} \varepsilon^{-1/3} k^{-5/3}$ соответственно. Принципиально возможен и второй сценарий поведения спиральности, который заключается в реализации прямого каскада спиральности, сопровождаемого обратным каскадом энергии. Спектральные распределения энергии и спиральности в этом случае должны отвечать законам $E(k) \sim C_{\eta} \varepsilon_{\eta}^{2/3} k^{-7/3}$ и $H(k) \sim C_{\eta} \varepsilon_{\eta}^{2/3} k^{-4/3}$ соответственно. Второй сценарий до настоящего времени не получил подтверждения ни в лабораторных, ни в численных экспериментах. Попытки прямого численного моделирования развитой спиральной турбулентности становятся все многочисленнее, но даже высокопроизводительные многопроцессорные системы, позволяющие проводить расчеты на сетках с несколькими тысячами узлов по каждой координате, воспроизводят инерционный интервалы в пределах чуть больше одной декады.

Надежду на моделирование процессов спектрального переноса в рамках протяженного инерционного интервала дают каскадные модели турбулентности. Эти модели представляют собой системы ОДУ гидродинамического типа, имеющие два интеграла движения и позволяющие описать процессы спектрального переноса сохраняемых величин и их спектральные распределения. Каскадные модели - сравнительно простой подход к изучению турбулентности, при котором доступны расчеты с числами Рейнольдса $10^6 \div 10^7$. Наибольшее распространение получила каскадная модель турбулентности, называемая моделью GOY (Gledzer-Okhitani-Yamada)

$$d_t U_n = k_n \left(U_{n-2}^* U_{n-1}^* - \frac{\varepsilon}{2} U_{n-1}^* U_{n+1}^* + \frac{\varepsilon - 1}{4} U_{n+1}^* U_{n+2}^* \right) - \nu k_n^2 U_n, \quad (1)$$

включающая один свободный параметр ε . Уравнение (1) сохраняет две квадратичные величины. Первая не зависит от параметра ε и соответствует энергии $W_1 = E = \sum_n |U_n|^2 = \sum_n (a_n^2 + b_n^2)$, вторая имеет вид $W_2 = \sum_n (\varepsilon - 1)^{-n} |U_n|$ и имеет различный смысл при $\varepsilon > 1$ и $\varepsilon < 1$. При $\varepsilon > 1$ квадратичная величина является положительно-определенной и может быть записана в виде $W_2 = \Omega = \sum_n k_n^{\varsigma} |U_n|^2$, где $\varsigma = -\log_2 |\varepsilon - 1|$. Данную величину называют обобщенной энстрофией. При $\varepsilon = 5/4$ она совпадает с обычной энстрофией и получается модель двумерной турбулентности. При $\varepsilon < 1$ сохраняется величина $W_2 = H = \sum_n (-1)^n k_n^{\varsigma} |U_n|^2$, которую называют обобщенной спиральностью. В этом случае сохраняется знакопеременная величина. При $\varepsilon = 1/2$ величина W_2 имеет размерность гидродинамической спиральности и принимает вид $H = \sum_n (-1)^n k_n |U_n|^2 = \sum_n (-1)^n k_n (a_n^2 + b_n^2)$. Именно этот случай моделирует трехмерную турбулентность, воспроизводя и свойства статистических моментов высших порядков.

Однако, модели типа GOY имеют особенность, состоящую в том, что структура второго интеграла движения - спиральности такова, что каждый масштаб однозначно связан со спиральностью одного знака, а "неспиральная" турбулентность возникает только при равенстве энергии четных и нечетных оболочек. Это означает, что в пределах одного масштаба неспирального движения быть не может, а спиральная турбулентность неизбежно описывается пилообразными спектрами, в которых доминируют либо четные, либо нечетные оболочки.

Встает необходимость построения каскадной модели развитой турбулентности, в которой присутствие энергии в определенном масштабе не влечет за собой обязательного наличия спиральности и в которой спиральность отдельной оболочки может менять знак. В работе построена каскадная модель спиральной турбулентности, представляющая собой обобщение известной модели Новикова-Деснянского,

$$\dot{U}_{n} = ik_{n}\gamma_{1}(U_{n-1}^{2} + (U_{n-1}^{*})^{2} + \lambda(U_{n}^{*}U_{n+1} - U_{n}^{*}U_{n+1}^{*}) - \lambda^{2}(U_{n}U_{n+1} + U_{n}U_{n+1}^{*})) + ik_{n}\gamma_{2}(U_{n-1}U_{n} + U_{n}U_{n-1}^{*} + \lambda(U_{n-1}^{*}U_{n}^{*} - U_{n-1}U_{n}^{*}) + \lambda^{2}(U_{n+1}^{2} + (U_{n+1}^{*})^{2})) - \frac{k_{n}^{2}U_{n}}{\text{Re}} + f_{n},$$

$$(2)$$

где $U_n = a_n + ib_n$ - комплексная каскадная переменная, характеризующая амплитуду турбулентных пульсаций поля скорости масштаба с волновым числом $k_n = \lambda^n$, γ_1, γ_2 - весовые коэффициенты, λ - коэффициент, характеризующий плотность разбиения волнового пространства на оболочки, Re число Рейнольдса, f_n - слагаемое, отвечающее за внешнюю силу. В отсутствии диссипации и внешней силы уравнения сохраняют полную энергию $E = \frac{1}{2} \sum_n (U_n U_n^*)$ и полную спиральность системы $H = \frac{1}{4i} \sum_n k_n (U_n^2 - (U_n^*)^2)$. Модель (2) дает модель Новикова -Деснянского при использовании действительных переменных, $\lambda = 2$ и $\gamma_2 = 0$.

Признаком наличия развитого инерционного интервала являются постоянные спектральные потоки энергии и спиральности. Для модели (2) спектральные потоки определяются формулами:

$$\Pi_n = \Im(k_n(\lambda\gamma_1(U_n^2 + (U_n^*)^2)(U_{n+1} - U_{n+1}^*) +$$

$$+\lambda^{2}\gamma_{2}(U_{n+1}^{2}+(U_{n+1}^{*})^{2})(U_{n}-U_{n}^{*}))$$

$$\Xi_{n} = \Im(k_{n}^{2}(\lambda^{2}\gamma_{1}(U_{n}^{2}+(U_{n}^{*})^{2})(U_{n+1}+U_{n+1}^{*}) + \lambda^{2}\gamma_{2}(U_{n+1}^{2}+(U_{n+1}^{*})^{2})(U_{n}+U_{n}^{*}))$$
(3)

Основной задачей, которая рассматривается в главе, является задача о турбулентности, в которой спиральность вносится на масштабе возбуждения силой, обеспечивающей постоянный приток энергии и спиральности. Расчеты проводились для значений числа Рейнольдса в интервале $10^3 \leq \text{Re} \leq 10^6$. Интегрирование уравнений (2) производилось по явной схеме методом Рунге-Кутты 4 порядка с постоянным шагом по времени. Тестовые расчеты выполнялись на персональном компьютере. Основные расчеты выполнены на вычислительном кластере Уральского института математики и механики "УРАН". Для получения устойчивых статистических характеристик задачи с близкими начальными условиями запускались одновременно на нескольких десятках процессоров, а затем производилось осреднение по всем реализациям.

Показано, что предложенная модель (2) эффективна как для спиральной, так и для неспиральной турбулентности. При внесении спиральности в турбулентность на масштабе её возбуждения, спиральность переносится по спектру подобно пассивной примеси, для энергии и для спиральности при этом реализуются устойчивые инерционные интервалы (см. рис.1), спектральные распределения в которых соответствуют степенным законам $E(k) \sim C_{\varepsilon} \varepsilon^{2/3} k^{-5/3}$ и $H(k) \sim C_{\eta} \varepsilon_{\eta} \varepsilon^{-1/3} k^{-5/3}$. Реализацию такого сценария подтверждают измерения, выполненные в пограничном слое атмосферы (Копров и др. ДАН, 2005. Т.403. С.1-4). Кроме того, показано, что диссипативные масштабы энергии и спиральности при этом совпадают $\lambda_E pprox \lambda_H$, а увеличение числа Рейнольдса приводит лишь к росту протяженности инерционного интервала. Коэффициент корреляции пульсаций скорости и завихренности падает пропорционально масштабу пульсаций. Статистические моменты $S_q = \langle |U_n|^q \rangle$ идентичны полученным с помощью модели GOY и согласуются с моделью турбулентности Ше-Левека, которая хорошо описывает экспериментальные данные.

Предложенная модель, таким образом, адекватно описывает турбулентность и может быть использована для изучения турбулентности в контексте различных задач.

Третья глава посвящена моделированию турбулентности во враща-

Рис. 1. Спектральный поток энергии П и спектральный поток спиральности Ξ в вынужденной турбулентности $\varepsilon = \eta = 1$ для различных значений числа Рейнольдса. 1, 5 – Re = 3 × 10³, 2, 6 – Re = 3 × 10⁴, 3, 7 – Re = 3 × 10⁵

Рис. 2. Распределение средних значений энергии и модуля спиральности оболочек в вынужденной турбулентности ($\varepsilon = \eta = 1$) для числа Рейнольдса Re = 3×10^3 (слева) и Re = 3×10^5 (справа). Пунктир соответствует спектру $E(k) \sim k$, прерывистая линия $E(k) \sim k^{-5/3}$

ющихся системах. На примере двух каскадных моделей турбулентности модели (1) и модели (2) рассматриваются различные варианты описания силы Кориолиса в рамках каскадных моделей и анализируются результаты, которые получаются при численных расчетах. Показано, что для обоих моделей вращение вызывает накопление энергии на больших масштабах и рост средней спиральности системы. Характерные спектральные распределения энергии для модели (2) приведены на рис.3. Степенной закон $E(k) \sim k^{-2}$, получаемый из феноменологических соображений для спектральной плотности энергии во вращающейся турбулентности, реализуется в определенном диапазоне интенсивности вращения в обоих моделях, однако сменяется затем более крутой зависимостью. Обе модели показывают,

Рис. 3. Компенсированные распределения спектральной плотности энергии для различных значений интенсивности вращения $\Omega = 1, 2, 4, 8, 16, 32, 64$ при $\text{Re} = 10^5$.

что свободное вырождение турбулентности в присутствии вращения существенно замедляется независимо от начальных условий.

<u>Четвертая глава</u> посвящена исследованию турбулентности, характеризующейся ненулевой средней спиральностью в широком диапазоне масштабов. Мерой, характеризующей долю энергии спиральных мод на заданном масштабе, выступает относительная спиральность $H^r(k) = \frac{|H(k)|}{kE(k)}$. Исследования, проведенные в главе 2, показали, что в турбулентности, в которой спиральность вносится в систему на масштабе возбуждения, относительная спиральность падает с ростом масштаба по закону $H^r(k) \sim k^{-1}$, вследствие чего доля энергии, приходящейся на спиральные моды, прогрессивно падает с ростом масштаба и спиральность ведет себя как пассивная примесь.

В данной главе рассмотрена турбулентность, в которой относительная спиральность $H^r(k) > 0$ в широком диапазоне масштабов. Поставленная задача рассматривается в двух постановках. Во-первых, изучается турбулентность, в которой имеется распределенный по спектру источник спиральности, заданный в виде внешней силы, реализующей впрыск спиральности без впрыска энергии во все масштабы с различным законом скейлинга. Используемая в расчетах сила имеет вид

$$f_n^H = i\eta_0 k_n^{\alpha} U_n (U_n^2 + U_n^{*2})/2, \qquad (4)$$

где параметр η_0 определяет уровень вносимой спиральности в старший масштаб выбранного диапазона, а параметр α характеризует степенную зависимость вносимой спиральности от волнового числа k_n .

Во-вторых, рассматривается задача, в которой источник спирально-

сти поддерживает заданный уровень средней относительной спиральности, которая определяется соотношением $H^r(k) = \frac{|H(k)|}{kE(k)}$. В этом случае сила имеет вид

$$f_n^H = i\eta_n U_n (U_n^2 + U_n^{*2})/2, (5)$$

где параметр η_n зависит от уровня средней относительной спиральности оболочки $\langle H_n^r \rangle = \frac{\langle H_n \rangle}{\langle k_n E_n \rangle}$ за некоторый промежуток времени T. При этом, требуемый уровень относительной спиральности оболочки \widehat{H}_n задается постоянным во всем инерционном интервале. Таким образом, скорость изменения количества вносимой в масштаб спиральности определяется по формуле $\frac{d\eta_n}{dt} = \frac{1}{T} \left(\frac{\langle H_n^r \rangle}{\widehat{H}_n} - 1 \right)$.

В рамках первой задачи показано, что силы, обеспечивающие распределенный по спектру приток спиральности в систему, влияют на спектральные распределения как спиральности, так и энергии. При этом, реализуется устойчивый инерционный интервал переноса энергии с прямым каскадом энергии и спиральности во всем диапазоне рассматриваемых управляющих параметров α и η_0 . Спектр энергии включает несколько участков с различными степенными законами, которые в пределе максимально высокой спиральности снова вырождаются в колмогоровское распределение энергии с законом $E(k) \sim k^{-5/3}$. Спектральное распределение спиральности в пределе максимальной спиральности также стремится к одному степенному закону $H(k) \sim k^{-2/3}$. Такой степенной закон спектрального распределения спиральности при колмогоровском распределении энергии отвечает ситуации с предельным уровнем спектральной плотности спиральности. Характерный график спектральных распределений энергии и спиральности приведен на рис.4.

В рамках второй задачи показано, что при любом уровне относительной спиральности реализуется прямой каскад энергии с устойчивым инерционным интервалом (см. рис.6) и спектральными распределениями энергии и спиральности описываемые степенными законами $E(k) \sim k^{-5/3}$ и $H(k) \sim k^{-2/3}$ соответственно. Компенсированные спектры приведены на рис.5. Спиральность также вовлекается в прямой каскад, а спектральный поток спиральности описывается степенным законом $\Theta_n \sim k_n$ при любом уровне относительной спиральности.

Рис. 4. Компенсированные спектры энергии и спиральности при $\alpha = 0.5$, $\varepsilon = 10, \eta_0 = 3.0, \text{Re} = 10^7$

Рис. 5. Спектральные распределения энергии (слева) и спиральности (справа) при различных значениях уровня относительной спиральности при $\mathrm{Re}=10^5$

Рис. 6. Спектральные потоки энергии (слева) и спиральности (справа) при различных значениях уровня относительной спиральности при ${
m Re}=10^5$

<u>В заключении</u> представлены основные результаты диссертационной работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Построена каскадная модель развитой трехмерной турбулентности, отличающаяся от существующих каскадных моделей способом описания спиральности. Показано, что предложенная модель эффективна для описания как спиральной, так и неспиральной турбулентности.
- Для предложенной каскадной модели разработан и отлажен расчетный код для вычислений на многопроцессорных кластерах, с помощью которого выполнялись параллельные вычисления нескольких сотен реализаций процессов с близкими начальными условиями, позволившие получить достоверные статистические характеристики рассмотренных режимов.
- 3. Показано, что при постоянном внесении спиральности на масштабе возбуждения турбулентности она переносится по всему инерционному интервалу как пассивная примесь, а ее диссипация происходит на тех же масштабах, что и диссипация энергии. Коэффициент корреляции пульсаций скорости и спиральности падает при этом пропорционально масштабу пульсаций. При больших числах Рейнольдса в спиральной турбулентности формируется инерционный интервал с обычным для развитой турбулентности спектральным распределением энергии, отличающимся от закона «-5/3» за счет перемежаемости. При этом во всем инерционном интервале наблюдается стационарный поток спиральности, причем спектральная плотность спиральности следует закону «-5/3».
- 4. Изучены возможные способы представления силы Кориолиса в рамках различных каскадных моделей. Показано, что во всех изученных моделях, при наличии силы Кориолиса имеет место накопление энергии на больших масштабах и снижение скорости вырождения свободной турбулентности. Вместе с тем, вопрос о моделировании силы Кориолиса в каскадных моделях требует дальнейшего изучения, в т.ч. в контексте построения анизотропных каскадных моделей турбулентности.
- 5. Изучено поведение турбулентности, в которой поддерживается существенная средняя спиральность в широком диапазоне *k*-

пространства. Показано, что наличие распределенного источника спиральности меняет картину спектральных распределений как спиральности, так и энергии. Для потока энергии в существенно спиральной турбулентности реализуется прямой каскад с развитым инерционным интервалом. Для спиральности также реализуется прямой каскад. Степень влияния спиральности на процессы каскадного переноса определяется уровнем относительной спиральности, характеризующей долю энергии, приходящуюся на спиральные моды. Показано, что в пределе максимальной спиральности ($H^r(k) \rightarrow 1$) спектральное распределение энергии стремится к колмогоровскому со степенным законом $E(k) \sim k^{-5/3}$, а спектральное распределение спиральности отвечает степенному закону $H(k) \sim k^{-2/3}$. Эти же спектральные распределения имеют место в турбулентности с постоянным уровнем относительной спиральности в инерционном интервале переноса энергии, независимо от её величины.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ ИЗЛОЖЕНО В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ:

- 1. Шестаков А.В., Степанов Р.А., Фрик П.Г. О спектральных свойствах спиральной турбулентности. //Известия РАН. Механика жидкости и газа, 2009, №5, С.33-43.
- Шестаков А.В., Степанов Р.А., Фрик П.Г. Влияние вращения на каскадные процессы в спиральной турбулентности. //Вычислительная механика сплошных сред, 2012, №2, С.193-198.
- Шестаков А.В., Степанов Р.А., Фрик П.Г. Каскадные модели турбулентности во вращающейся жидкости. //Сборник статей "Гидродинамика", вып №15, ПГУ, Пермь, 2005, С.159-170.
- 4. Шестаков А.В., Степанов Р.А., Фрик П.Г. Построение каскадных моделей турбулентности с неположительно определенными интегралами движения. //Сборник статей научной конференции молодых ученых по механике сплошных сред посвященной 80-летию А.А.Поздеева "Поздеевские чтения", Пермь, 2006, С.121-122.

- 5. Шестаков А.В., Степанов Р.А., Фрик П.Г. Моделирование каскадных процессов в спиральной турбулентности. // Сборник статей XV Зимней школы по механике сплошных сред, Пермь, 2007, Ч.3, С.207-210.
- Шестаков А.В., Фрик П.Г., Мизева И.А., Носков В.И., Попова Е.Н., Степанов Р.А., Чупин А.В. МГД-турбулентность и ее вклад в динамо средних полей. //В сборнике "Региональный конкурс РФФИ-Урал", Ч 1, Пермь-Екатеринбург, 2008, С.139-143.
- Шестаков А.В., Степанов Р.А., Фрик П.Г. Каскадная модель турбулентности во вращающейся жидкости. //Тезисы докладов 14 Всероссийской конференции "Математическое моделирование в естественных науках", Пермь, 2005, С.80.
- Шестаков А.В., Степанов Р.А., Фрик П.Г. Построение аналога гидродинамической спиральности в каскадных моделей турбулентности. //Тезисы докладов конференция молодых ученых "Неравновесные процессы в сплошных средах", Пермь, 2006, С.94-96.
- 9. Шестаков А.В., Степанов Р.А., Фрик П.Г. Спектральные свойства спиральной турбулентности. //Тезисы докладов XVI Зимней школы по механике сплошных сред, Пермь, 2009, С.310.
- Шестаков А.В., Степанов Р.А., Фрик П.Г. Влияние вращение на каскадные процессы в спиральной турбулентности. //Тезисы докладов XVII Зимней школы по механике сплошных сред, Пермь, 2011, С.334.